Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/164081.164118acmconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
Article
Free access

Noether's S-transformation simplifies curve singularities rationally: a local analysis

Published: 01 August 1993 Publication History
First page of PDF

References

[1]
Shreeram S. Abhyankar and C.L. Bajaj. Computations on algebraic curves. In P. Gianni, editor, Proceedings of the International Symposium on Symbolic and Algebraic Computation, pages 274-284. Springer Lecture Notes in Computer Science, 1988.
[2]
Shreeram S. Abhyankar. Algebraic Geometry for Scientists and Engineers, volume 35 of Mathemahcal Surveys and Monographs. American Mathematical Society, 1990.
[3]
B. Buchberger, G.E. Collins, and R. Loos, editors. Computer Algebra" Symbolic and Algebraic Computation. Springer Verlag, 1983.
[4]
Egbert Brieskorn and Horst KnSrrer. Plane Algebraic Curves. Birkh~iuser, 1986.
[5]
John Canny. Some algebraic and geometric computations in pspace. In Proceedings ACM STOC, pages 460-467, 1988.
[6]
William Fulton. Algebraic Curves. Addison- Wesley, 1989.
[7]
J.Dennis Lawrence. A Catalog of Special Plane Curves. Dover, 1972.
[8]
Max Noether. 0bet Fl~ichen, welche Schaaren rationaler Curven besitzen. Mathematische Annalen, Band 3, 1871.
[9]
Max Noether. Rationale Ausfiihrung der Operationen in der Theorie der algebraischen Functionen. Mathematische Annalen, Band 23, 1884.
[10]
I.G. Petrovskii and S.I~I. Nikolskii, editors. Algebraic Surfaces. Proceedings of the Steklov Institute of Mathematics. AMS, 1967.
[11]
Takkis Sakkalis and Rida Farouki. Singular points of algebraic curves. Journal of Symbolic Computation, 9:405-421, 1990.
[12]
J.Rafael Sendra and Franz Winkler. Symbolic parametrization of curves. Journal of Symbolic Computation, 12"607-631, 1991.
[13]
Jeremy Teitelbaum. The computational complexity of the resolution of plane curve singularities. Mathematics of Computation, 54(190)'797-837, 1990.
[14]
Robert J. Walker. Algebraic Curves. Springer- Verlag, 1978.

Cited By

View all
  • (2005)Computing in the jacobian of a plane algebraic curveAlgorithmic Number Theory10.1007/3-540-58691-1_60(221-233)Online publication date: 4-Jun-2005

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
ISSAC '93: Proceedings of the 1993 international symposium on Symbolic and algebraic computation
August 1993
321 pages
ISBN:0897916042
DOI:10.1145/164081
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 August 1993

Permissions

Request permissions for this article.

Check for updates

Qualifiers

  • Article

Conference

ISSAC93
Sponsor:

Acceptance Rates

Overall Acceptance Rate 395 of 838 submissions, 47%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)37
  • Downloads (Last 6 weeks)9
Reflects downloads up to 17 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2005)Computing in the jacobian of a plane algebraic curveAlgorithmic Number Theory10.1007/3-540-58691-1_60(221-233)Online publication date: 4-Jun-2005

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media