Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/1536414.1536501acmconferencesArticle/Chapter ViewAbstractPublication PagesstocConference Proceedingsconference-collections
research-article

Small-size ε-nets for axis-parallel rectangles and boxes

Published: 31 May 2009 Publication History

Abstract

We show the existence of ε-nets of size O(1/ε log log 1/ε) for planar point sets and axis-parallel rectangular ranges. The same bound holds for points in the plane with "fat" triangular ranges, and for point sets in reals3 and axis-parallel boxes; these are the first known non-trivial bounds for these range spaces. Our technique also yields improved bounds on the size of ε-nets in the more general context considered by Clarkson and Varadarajan. For example, we show the existence of ε-nets of size
O(1/ε log log log 1/ε) for the dual range space of "fat" regions and planar point sets (where the regions are the ground objects and the ranges are subsets stabbed by points). Plugging our bounds into the technique of Bronnimann and Goodrich, we obtain improved approximation factors (computable in randomized polynomial time) for the hitting set or the set cover problems associated with the corresponding range spaces.

References

[1]
P. K. Agarwal, J. Matousek, and O. Schwarzkopf,Computing many faces in arrangements of lines and segments,phSIAM J. Comput., 27:491--505, 1998.
[2]
M. Bellare, S. Goldwasser, G. Lund, and A. Russell,Efficient probabilistically checkable proofs and applications to approximation. In Proc. 25th Annu. ACM Symp. Theory Comput., pp. 294--304, 1993.
[3]
A. Blumer, A. Ehrenfeucht, D. Haussler, and M. Warmuth,Classifying learnable geometric concepts with the Vapnik-Chervonenkis dimension,phJ. ACM, 36(4):929--965, 1989.
[4]
J.D. Boissonnat, M. Sharir, B. Tagansky and M. Yvinec,Voronoi diagrams in higher dimensions under certain polyhedraldistance functions,phDiscrete Comput. Geom., 19:485--519, 1998.
[5]
H. Brönnimann and M. T. Goodrich, Almost optimal set covers in finite VC dimensions, Discrete Comput. Geom., 14:463--479, 1995.
[6]
H. Brönnimann and J. Lenchner,Fast almost-linear-sized nets for boxes in the plane.In Proc. 14th Annu. Fall Workshop Comput. Geom., pp. 36--38, 2004.
[7]
B. Chazelle and J. Friedman,A deterministic view of random sampling and its use in geometry, Combinatorica, 10:229--249, 1990.
[8]
K. L. Clarkson, New applications of random sampling in computational geometry, Discrete Comput. Geom., 2:195--222, 1987.
[9]
K. L. Clarkson, Algorithms for polytope covering and approximation.In Proc. 3rd Workshop on Algorithms and Data Structures, pages 246--252, 1993.
[10]
K. L. Clarkson and P. W. Shor,Applications of random sampling in computational geometry, II, Discrete Comput. Geom., 4:387--421, 1989.
[11]
K. L. Clarkson and K. Varadarajan,Improved approximation algorithms for geometric set cover, Discrete Comput. Geom., 37:43--58, 2007.
[12]
T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. MIT Press, Cambridge, MA, 2001.
[13]
M. de Berg,Improved bounds on the union complexity of fat objects, Discrete Comput. Geom., 40(1):127--140, 2008.
[14]
M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars, Computational Geometry: Algorithms and Applications,3rd rev. ed., Springer-Verlag, Berlin, 2008.
[15]
A. Efrat,The complexity of the union of (α,β)-covered objects, SIAM J. Comput., 34:775--787, 2005.
[16]
H. Edelsbrunner, L. Guibas, J. Hershberger, J. Pach, R. Pollack,R. Seidel, M. Sharir, and J. Snoeyink, On arrangements of Jordan arcs with three intersections per pair, Discrete Comput. Geom., 4(1):523--539, 1989.
[17]
A. Efrat and M. Katz,On the union of κ-curved objects, Comput. Geom. Theory Appl. 14:241--254, 1999.
[18]
A. Efrat and M. Sharir,The complexity of the union of fat objects in the plane, Discrete Comput. Geom. 23:171--189, 2000.
[19]
T. Feder and D. H. Greene,Optimal algorithms for approximate clustering.In Proc. 20th Annu. ACM Symp. Theory Comput., pages 434--444, 1988.
[20]
U. Feige, A threshold of łnn for approximating set cover, J. ACM, 45(4):634--652, 1998.
[21]
R. Fowler, M. Paterson, and S. Tanimoto, Optimal packing and covering in the plane are NP-complete, Inform. Process. Lett., 12(3):133--137, 1981.
[22]
M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness,W. H. Freeman, New York, NY, 1979.
[23]
S. Har-Peled, H. Kaplan, M. Sharir, and S. Smorodinsky, ε-nets for halfspaces revisited, manuscript, 2008.
[24]
D. Haussler and E. Welzl,ε-nets and simplex range queries, Discrete Comput. Geom., 2:127--151, 1987.
[25]
H. Kaplan, N. Rubin, M. Sharir, and E. Verbin, Efficient colored orthogonal range counting, SIAM J. Comput., 38:982--1011, 2008.
[26]
R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller, J. W. Thatcher, Eds., Complexity of Computer Computations, pages 85--103, Plenum Press, New York, 1972.
[27]
J. Komlós, J. Pach, and G. Woeginger, Almost tight bounds for epsilon nets, Discrete Comput. Geom., 7:163--173, 1992.
[28]
J. Matousek, Lectures on Discrete Geometry, Springer-Verlag New York, 2002.
[29]
J. Matousek,Reporting points in halfspaces, Comput. Geom. Theory Appl. 2:169--186, 1992.
[30]
J. Matousek,Approximations and optimal geometric divide-and-conquer, J. Comput Sys. Sci., 50(2):203--208, 1995.
[31]
J. Matousek, R. Seidel, and E. Welzl,How to net a lot with little: Small ε-nets for disksand halfspaces.In phProc. 6th Annu. ACM Sympos. Comput. Geom., pages 16--22, 1990.Revised version at http://kam.mff.cuni.cz/matousek/enets3.ps.gz .
[32]
J. Matousek, J. Pach, M. Sharir, S. Sifrony, and E. Welzl, Fat triangles determine linearly many holes, SIAM J. Comput., 23:154--169, 1994.
[33]
A. Naamad, D. T. Lee, and W. L. Hsu,On the maximal empty rectangle problem, Discrete Applied Math., 8:267--277, 1984.
[34]
J. Pach and P. K. Agarwal, Combinatorial Geometry, Wiley Interscience, New York, 1995.
[35]
J. Pach and G. Tardos,On the boundary complexity of the union of fat triangles, SIAM J. Comput., 31:1745--1760, 2002.
[36]
E. Pyrga and S. Ray,New existence proofs for ε-nets.In Proc. 24th Annu. ACM Sympos. Comput. Geom., pages 199--207, 2008.
[37]
M. Sharir and P. K. Agarwal, Davenport-Schinzel Sequences and Their Geometric Applications, Cambridge University Press, New York, 1995.
[38]
K. Varadarajan, Epsilon nets and union complexity.In Proc. 25th Annu. ACM Sympos. Comput. Geom., 2009, to appear.

Cited By

View all

Index Terms

  1. Small-size ε-nets for axis-parallel rectangles and boxes

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    STOC '09: Proceedings of the forty-first annual ACM symposium on Theory of computing
    May 2009
    750 pages
    ISBN:9781605585062
    DOI:10.1145/1536414
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 31 May 2009

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. ε-nets
    2. geometric range spaces
    3. hitting set
    4. randomized algorithms
    5. set cover

    Qualifiers

    • Research-article

    Conference

    STOC '09
    Sponsor:
    STOC '09: Symposium on Theory of Computing
    May 31 - June 2, 2009
    MD, Bethesda, USA

    Acceptance Rates

    Overall Acceptance Rate 1,469 of 4,586 submissions, 32%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)31
    • Downloads (Last 6 weeks)7
    Reflects downloads up to 12 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2023)Hitting Sets when the Shallow Cell Complexity is SmallApproximation and Online Algorithms10.1007/978-3-031-49815-2_12(160-174)Online publication date: 22-Dec-2023
    • (2018)Approximating the Generalized Minimum Manhattan Network ProblemAlgorithmica10.1007/s00453-017-0298-080:4(1170-1190)Online publication date: 1-Apr-2018
    • (2012)Weighted geometric set multi-cover via quasi-uniform samplingProceedings of the 20th Annual European conference on Algorithms10.1007/978-3-642-33090-2_14(145-156)Online publication date: 10-Sep-2012
    • (2010)Exact and approximation algorithms for geometric and capacitated set cover problemsProceedings of the 16th annual international conference on Computing and combinatorics10.5555/1886811.1886843(226-234)Online publication date: 19-Jul-2010
    • (2010)Weighted geometric set cover via quasi-uniform samplingProceedings of the forty-second ACM symposium on Theory of computing10.1145/1806689.1806777(641-648)Online publication date: 5-Jun-2010
    • (2010)A note about weak ε-nets for axis-parallel boxes in d-spaceInformation Processing Letters10.1016/j.ipl.2010.06.005110:18-19(835-840)Online publication date: 1-Sep-2010
    • (2010)Exact and Approximation Algorithms for Geometric and Capacitated Set Cover ProblemsComputing and Combinatorics10.1007/978-3-642-14031-0_26(226-234)Online publication date: 2010
    • (2009)On the set multi-cover problem in geometric settingsProceedings of the twenty-fifth annual symposium on Computational geometry10.1145/1542362.1542421(341-350)Online publication date: 8-Jun-2009
    • (2009)Near-linear approximation algorithms for geometric hitting setsProceedings of the twenty-fifth annual symposium on Computational geometry10.1145/1542362.1542368(23-32)Online publication date: 8-Jun-2009
    • (2009)Epsilon nets and union complexityProceedings of the twenty-fifth annual symposium on Computational geometry10.1145/1542362.1542366(11-16)Online publication date: 8-Jun-2009

    View Options

    Get Access

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media