Nothing Special   »   [go: up one dir, main page]

skip to main content
article

FILTRANE, a Fortran 95 filter-trust-region package for solving nonlinear least-squares and nonlinear feasibility problems

Published: 01 March 2007 Publication History

Abstract

FILTRANE, a new Fortran 95 package for finding vectors satisfying general sets of nonlinear equations and/or inequalities, is presented. Several algorithmic variants are discussed and extensively compared on a set of CUTEr test problems, indicating that the default variant is both reliable and efficient. This discussion provides a first experimental study of the parameters inherent in filter algorithms.

References

[1]
Conn, A. R., Gould, N. I. M., and Toint, Ph. L. 2000. Trust-Region Methods. MPS-SIAM Series on Optimization, No. 01. SIAM, Philadelphia, USA.
[2]
Dennis, J. E., Gay, D. M., and Welsch, R. E. 1981. An adaptive nonlinear least squares algorithm. ACM Trans. Math. Softw. 7, 3, 348--368.
[3]
Dennis, J. E. and Schnabel, R. B. 1983. Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice-Hall, Englewood Cliffs, NJ. Reprinted as Classics in Applied Mathematics 16, SIAM, Philadelphia, PA, 1996.
[4]
Dolan, E. D. and Moré, J. J. 2002. Benchmarking optimization software with performance profiles. Math. Programm. 91, 2, 201--213.
[5]
Fletcher, R., Gould, N. I. M., Leyffer, S., Toint, Ph. L., and Wächter, A. 2002a. Global convergence of trust-region SQP-filter algorithms for nonlinear programming. SIAM J. Optimiz. 13, 3, 635--659.
[6]
Fletcher, R. and Leyffer, S. 1998. User manual for filterSQP. Numerical analysis rep. NA/181. Department of Mathematics, University of Dundee, Dundee, Scotland.
[7]
Fletcher, R. and Leyffer, S. 2002. Nonlinear programming without a penalty function. Math. Programm. 91, 2, 239--269.
[8]
Fletcher, R., Leyffer, S., and Toint, Ph. L. 2002b. On the global convergence of a filter-SQP algorithm. SIAM J. Optimiz. 13, 1, 44--59.
[9]
Gonzaga, C. C., Karas, E., and Vanti, M. 2003. A globally convergent filter method for nonlinear programming. SIAM J. Optimiz. 14, 3, 646--669.
[10]
Gould, N. I. M., Leyffer, S., and Toint, Ph. L. 2005. A multidimensional filter algorithm for nonlinear equations and nonlinear least-squares. SIAM J. Optimiz. 15, 1, 17--38.
[11]
Gould, N. I. M., Lucidi, S., Roma, M., and Toint, Ph. L. 1999. Solving the trust-region subproblem using the Lanczos method. SIAM J. Optimiz. 9, 2, 504--525.
[12]
Gould, N. I. M., Orban, D., and Toint, Ph. L. 2003a. CUTEr, a constrained and unconstrained testing environment, revisited. ACM Trans. Math. Softw. 29, 4, 373--394.
[13]
Gould, N. I. M., Orban, D., and Toint, Ph. L. 2003b. GALAHAD---a library of thread-safe Fortran 90 packages for large-scale nonlinear optimization. ACM Trans. Math. Softw. 29, 4, 353--372.
[14]
Moré, J. J. and Sorensen, D. C. 1983. Computing a trust region step. SIAM J. Sci. Statist. Comput. 4, 3, 553--572.
[15]
Moré, J. J. and Sorensen, D. C. 1984. Newton's method. In Studies in Numerical Analysis, G. H. Golub, Ed. MAA Studies in Mathematics, No. 24. American Mathematical Society, Providence, RI, 29--82.
[16]
Nocedal, J. 1984. Trust region algorithms for solving large systems of nonlinear equations. In Innovative Methods for Nonlinear Problems, W. Liu, T. Belytschko, and K. C. Park, Eds. Pineridge Press, Swansea, U. K. 93--102.
[17]
Ortega, J. M. and Rheinboldt, W. C. 1970. Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, London, U. K.
[18]
Toint, Ph. L. 1986. Numerical solution of large sets of algebraic nonlinear equations. Math. Computat. 46, 173, 175--189.
[19]
Toint, Ph. L. 1987. On large scale nonlinear least squares calculations. SIAM J. Sci. Statist. Comput. 8, 3, 416--435.

Cited By

View all
  • (2020)High-order evaluation complexity for convexly-constrained optimization with non-Lipschitzian group sparsity termsMathematical Programming10.1007/s10107-020-01470-9Online publication date: 28-Jan-2020
  • (2019)Complexity of Partially Separable Convexly Constrained Optimization with Non-Lipschitzian SingularitiesSIAM Journal on Optimization10.1137/18M116651129:1(874-903)Online publication date: 28-Mar-2019
  • (2018)A truly variationally consistent and symmetric mortar-based contact formulation for finite deformation solid mechanicsComputer Methods in Applied Mechanics and Engineering10.1016/j.cma.2018.07.020342(532-560)Online publication date: Dec-2018
  • Show More Cited By

Index Terms

  1. FILTRANE, a Fortran 95 filter-trust-region package for solving nonlinear least-squares and nonlinear feasibility problems

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Mathematical Software
    ACM Transactions on Mathematical Software  Volume 33, Issue 1
    March 2007
    134 pages
    ISSN:0098-3500
    EISSN:1557-7295
    DOI:10.1145/1206040
    Issue’s Table of Contents

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 01 March 2007
    Published in TOMS Volume 33, Issue 1

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Nonlinear systems
    2. filter methods
    3. nonlinear feasibility
    4. nonlinear least-squares

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)3
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 18 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2020)High-order evaluation complexity for convexly-constrained optimization with non-Lipschitzian group sparsity termsMathematical Programming10.1007/s10107-020-01470-9Online publication date: 28-Jan-2020
    • (2019)Complexity of Partially Separable Convexly Constrained Optimization with Non-Lipschitzian SingularitiesSIAM Journal on Optimization10.1137/18M116651129:1(874-903)Online publication date: 28-Mar-2019
    • (2018)A truly variationally consistent and symmetric mortar-based contact formulation for finite deformation solid mechanicsComputer Methods in Applied Mechanics and Engineering10.1016/j.cma.2018.07.020342(532-560)Online publication date: Dec-2018
    • (2017)Combining Filter Method and Dynamically Dimensioned Search for Constrained Global OptimizationComputational Science and Its Applications – ICCSA 201710.1007/978-3-319-62398-6_9(119-134)Online publication date: 14-Jul-2017
    • (2016)Global convergence of a derivative-free inexact restoration filter algorithm for nonlinear programmingOptimization10.1080/02331934.2016.126362966:2(271-292)Online publication date: 22-Dec-2016
    • (2016)Local analysis of a spectral correction for the Gauss-Newton model applied to quadratic residual problemsNumerical Algorithms10.1007/s11075-016-0101-373:2(407-431)Online publication date: 1-Oct-2016
    • (2016)Globalization technique for projected Newton-Krylov methodsInternational Journal for Numerical Methods in Engineering10.1002/nme.5426110:7(661-674)Online publication date: 11-Oct-2016
    • (2015)A new trust-region method for solving systems of equalities and inequalitiesComputational and Applied Mathematics10.1007/s40314-015-0257-936:1(769-790)Online publication date: 29-Jul-2015
    • (2012)A modified Newton direction for unconstrained optimizationOptimization10.1080/02331934.2012.69611563:7(983-1004)Online publication date: 26-Jun-2012
    • (2012)TRESNEI, a Matlab trust-region solver for systems of nonlinear equalities and inequalitiesComputational Optimization and Applications10.1007/s10589-010-9327-551:1(27-49)Online publication date: 1-Jan-2012
    • Show More Cited By

    View Options

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media