Nothing Special   »   [go: up one dir, main page]

skip to main content
article
Free access

TNPACK—A truncated Newton minimization package for large-scale problems: I. Algorithm and usage

Published: 01 March 1992 Publication History
First page of PDF

References

[1]
CoNcus, P., GOLUB, G. H., AND O'LEARY, D.P. A generalized conjugate gradient method for the numerical solution of elliptic partial differential equations. In Sparse Matrix Computation, J. R. Bunch and D. J. Rose, Eds., Academic Press, New York, 1976.
[2]
DEMBO, R. S., ANn STEIHAUC~, T. Truncated-Newton algorithms for large-scale unconstrained optimization. Math. Program. 26, (1983), 190-212.
[3]
DENNm, JR., J. E., ANn MoR~, J.J. Quasi-Newton methods, motivation and theory. SIAM Rev. 19 (1977), 46-89.
[4]
DENNm, JR., J. E., ANn SCSNABEL, R.B. Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice-Hall, Englewood Cliffs, NJ, (1983), 116;-129.
[5]
DEUFLHARD, P. Global inexact Newton methods for very large scale nonlinear problems. In Proceedings of the Copper Mountain Conference on Iterative Methods (Copper Mountain, Colorado, Apr. 1-5, 1990).
[6]
EISENSTAT, S. C., GURSKY, M. C., SC~ULTZ, M. H., AND SHERMAN, A.H. Yale sparse matrix package, I. The symmetric codes. Int. J. Numer. Meth. Eng. 18 (1982), 1145-1151.
[7]
EISENSTAT, S. C., SHULTZ, M. H., AND SHERMAN, A.H. Efficient implementation of sparse symmetric gaussian elimination. In Advances in Computer Methods for Partial Differential Equations, R. Vichnevetsky, Ed., AICA, New Brunswick, NJ, 1975, pp. 33-39.
[8]
EISENSTAT, S. C., SHULTZ, M. H., AND SHERMAN, A. H. Application of sparse matrix methods to partial differential equations. In Advances ~n Computer Methods for Parttal Differenttal Equations, R. Vichnevetsky, Ed., AICA, New Brunswick, NJ, 1975, pp. 40-45.
[9]
EISENSTAT, S. C., SCHULTZ, M. H., AND SHERMAN, A.H. Algorithms and data structures for sparse symmetric gausslan ehmination SIAM J. Sc~ Stat. Comput. 2 (1981), 225-237.
[10]
ERISMAN, A., AND GRIMES, R. Sparse matrices today. SIAM NEWS 22 (May 1989).
[11]
FOGELSON, A. L. A mathematical model and numerical method for studying platelet adhemon and aggregation during blood clotting. J. Comput. Phys. 56 (1984), 111-134.
[12]
GEORGE, A., AND LIU, J W. Computer Solutwn of Large Sparse Posltlve Definzte Systems. Prentice-Hall, Englewood Cliffs, NJ, 1981.
[13]
GILBERT, J. C., AND LEMAR~CHAL, C. Some numerical experiments with variable-storage quasi-Newton algorithms. Math. Program, 45 (1989), 407-435.
[14]
GILL, P. E., MURRAY, W., SAUNDERS, M. A, AND WRIGHT, M. H. Computing forwarddifference intervals for numerical optimization SIAM J. Sct. Stat. Comput. 4, (1983), 310-321
[15]
GILL, P E., MURRAY, W., AND WRIGHT, M.H. Practical Optimization. Academic Press, New York, 1983
[16]
GOLUB, G. H., AND VAN LOAN, C.F. MGtFLx Computations. Johns Hopkins Univ. Press, Baltimore, MD, 1984, 362-379.
[17]
LIu, D. C., AND NOCEDAL, J. On the limited memory BFGS method for large scale optimization. Math. Program. 45 (1989), 503 528.
[18]
MORE, J., AND THUENTE, D J. On line search algorithms with guaranteed sufficient decrease. Mathematics and Computer Science Division Preprint MCS-P153-0590, Argonne National Laboratory, Argonne, Ill, 1990.
[19]
NASH, S.G. Solving nonlinear programming problems using truncated-Newton techniques In Numerical Optimization 1984, P. T. Boggs, R. H. Byrd, and R. B. Schnabel, Eds., SIAM, Philadelphia, 1985, pp. 119-136.
[20]
NASH, S. G., AND SORER, A. Assessing a search direction within a truncated Newton method. Oper. Res. Lett. 9 (1990), 219-22i.
[21]
NASH, S G., AND SORER, A A general-purpose parallel algorithm for unconstrained optimization. SIAM J. Opt. I (1991), 530-547.
[22]
OPPE, T. C., JOUBERT, W. D., AND KINCAID, D. R. NSPCG User's Guide. Version 1.0: A package for solving large sparse linear systems by various iterative methods. Tech Rep CNA-216, Center for Numerical Analysis, The Univ. of Texas at Austin, 1988.
[23]
RosE, D. J. A graph-theoretic study of the numerical solution of sparse positive-definite systems of linear equations. In Graph Theory and Computing, R. C. Read, Ed., Academic Press, NY, 1972.
[24]
SEHLICK, T. New approaches to potentia! energy minimization and molecular dynamics algorithms Comput. Chem 15 (1991), 251-260.
[25]
SCHLICK, T., AND FOGELSON, A. TNPACK--A truncated Newton minimization package for large-scale problems: II. Implementation examples. ACM Trans. Math. Softw. 18, i (March 1992), 71-111.
[26]
SCHLICK, T., HINGERTY, B. E., PESKIN, C. S., OVERTON, M. L., AND BROYDE, S. Search strategies, minimization algorithms, and molecular dynamics simulations for exploring conformational spaces of nucleic acids. In Theoretical B~ochemistry and Molecular Biophystcs, Volume I.' Nuclezc Acids, D. L. Beveridge and R. Lavery, Eds., Adenine Press, Guilderland, New York, 1991, pp. 39-58.
[27]
SCHLICK, T., AND OVERTON, M. A powerful truncated Newton method for potential energy minimization. J. Cot,put. Chem. 8 (1987), 1025-1039.

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Transactions on Mathematical Software
ACM Transactions on Mathematical Software  Volume 18, Issue 1
March 1992
111 pages
ISSN:0098-3500
EISSN:1557-7295
DOI:10.1145/128745
  • Editor:
  • John Rice
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 March 1992
Published in TOMS Volume 18, Issue 1

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. nonlinear optimization
  2. preconditioned conjugate gradient
  3. sparse matrices
  4. truncated Newton methods

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)45
  • Downloads (Last 6 weeks)10
Reflects downloads up to 21 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Introduction to Unconstrained Optimization and Quantum CalculusUnconstrained Optimization and Quantum Calculus10.1007/978-981-97-2435-2_1(1-22)Online publication date: 28-May-2024
  • (2022)Inexact Newton MethodsModern Numerical Nonlinear Optimization10.1007/978-3-031-08720-2_7(315-330)Online publication date: 19-Oct-2022
  • (2022)Simple Bound Constrained OptimizationModern Numerical Nonlinear Optimization10.1007/978-3-031-08720-2_12(411-437)Online publication date: 19-Oct-2022
  • (2022)IntroductionModern Numerical Nonlinear Optimization10.1007/978-3-031-08720-2_1(1-19)Online publication date: 19-Oct-2022
  • (2018)Full-waveform inversion using truncated Newton optimizationSEG Technical Program Expanded Abstracts 201810.1190/segam2018-2998226.1(1384-1388)Online publication date: 27-Aug-2018
  • (2018)Hessian matrix approach for determining error field sensitivity to coil deviationsPlasma Physics and Controlled Fusion10.1088/1361-6587/aab6cb60:5(054016)Online publication date: 4-Apr-2018
  • (2018)An adaptive truncation criterion, for linesearch-based truncated Newton methods in large scale nonconvex optimizationOperations Research Letters10.1016/j.orl.2017.10.01446:1(7-12)Online publication date: Jan-2018
  • (2017)A Hessian-free Newton–Raphson method for the configuration of physics systems featured by numerically asymmetric force fieldMathematics and Computers in Simulation10.1016/j.matcom.2016.11.011140(1-23)Online publication date: Oct-2017
  • (2017)Simple Bound Constraints OptimizationContinuous Nonlinear Optimization for Engineering Applications in GAMS Technology10.1007/978-3-319-58356-3_6(147-184)Online publication date: 9-Nov-2017
  • (2016)An all-atom, active site exploration of antiviral drugs that target Flaviviridae polymerasesJournal of General Virology10.1099/jgv.0.00056997:10(2552-2565)Online publication date: 13-Oct-2016
  • Show More Cited By

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Full Access

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media