Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/1277548.1277570acmconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
Article

Fast and exact geometric analysis of real algebraic plane curves

Published: 29 July 2007 Publication History

Abstract

An algorithm is presented for the geometric analysis of an algebraic curve f(x, y) = 0 in the real affine plane. It computes a cylindrical algebraic decomposition (CAD) of the plane, augmented with adjacency information. The adjacency information describes the curve's topology by a topologically equivalent planar graph. The numerical data in the CAD gives an embedding of the graph.
The algorithm is designed to provide the exact result for all inputs but to perform only few symbolic operations for the sake of efficiency. In particular, the roots of f(∝, y) at a critical x-coordinate .
The algorithm is implemented as C++ library AlciX in the EXACUS project. Running time comparisons with top by Gonzalez-Vega and Necula (2002), and with cad2d by Brown demonstrate its efficiency.

References

[1]
J. Abbott: "Quadratic Interval Refinement for Real Roots". URL http://www.dima.unige.it/~abbott/. Poster presented at the 2006 Int. Symp. on Symb. and Alg. Comp. (ISSAC 2006).
[2]
D. Arnon, G. Collins, S. McCallum: "Cylindrical Algebraic Decomposition I: the Basic Algorithm". SIAM J. Comp. 13 (1984) 865--877.
[3]
D. Arnon, G. Collins, S. McCallum: "Cylindrical Algebraic Decomposition II: an Adjacency Algorithm for the Plane". SIAM J. Comp. 13 (1984) 878--889.
[4]
S. Basu, R. Pollack, M.-F. Roy: Algorithms in Real Algebraic Geometry. Springer, 2nd edn., 2006.
[5]
E. Berberich, A. Eigenwillig, M. Hemmer, S. Hert, L. Kettner, K. Mehlhorn, J. Reichel, S. Schmitt, E. Schömer, N. Wolpert: "EXACUS: Efficient and exact algorithms for curves and surfaces". In: Proc. of the 13th Ann. European Symp. on Alg. (ESA 2005), LNCS, vol. 3669. Springer, 2005 155--166.
[6]
C. W. Brown: "Constructing Cylindrical Algebraic Decompositions of the Plane Quickly", 2002. URL http://www.cs.usna.edu/~wcbrown/. Unpublished.
[7]
G. Collins: "Quantifier Elimination For Real Closed Fields By Cylindrical Algebraic Decomposition". In: Proc. 2nd GI Conf. on Automata Theory and Formal Languages, LNCS, vol. 33. Springer, 1975 134--183. Reprinted with corrections in: B. F. Caviness, J. R. Johnson (eds.), Quantifier Elimination and Cylindrical Algebraic Decomposition, pp. 85--121, Springer, 1998.
[8]
G. Collins, A. Akritas: "Polynomial Real Root Isolation Using Descartes' Rule of Signs". In: R. Jenks (ed.) Proc. of the third ACM symp. on Symb. and Alg. Comp. ACM, 1976 272--275.
[9]
G. Collins, J. Johnson, W. Krandick: "Interval Arithmetic in Cylindrical Algebraic Decomposition". J. Symb. Comp. 34 (2002) 143--155.
[10]
L. Ducos: "Optimizations of the Subresultant Algorithm". J. Pure Appl. Alg. 145 (2000) 149--163.
[11]
A. Eigenwillig: "On Multiple Roots in Descartes' Rule and Their Distance to Roots of Higher Derivatives"'. J. Comp. Appl. Math. 200 (2007) 226--230.
[12]
A. Eigenwillig, L. Kettner, W. Krandick, K. Mehlhorn, S. Schmitt, N. Wolpert: "A Descartes Algorithm for Polynomials with Bit-Stream Coefficients". In: 8th Int. Workshop on Comp. Alg. in Scient. Comp. (CASC 2005), LNCS, vol. 3718, 2005 138--149.
[13]
A. Eigenwillig, V. Sharma, C. Yap: "Almost Tight Recursion Tree Bounds for the Descartes Method". In: Proc. of the 2006 Int. Symp. on Symb. and Alg. Comp. (ISSAC 2006). ACM, 2006 71--78.
[14]
L. Gonzalez-Vega, M. El Kahoui: "An Improved Upper Complexity Bound for the Topology Computation of a Real Algebraic Plane Curve". J. Compl. 12 (1996) 527--544.
[15]
L. Gonzalez-Vega, I. Necula: "Efficient Topology Determination of Implicitly Defined Algebraic Plane Curves". Comp. Aided Geom. Design 19 (2002) 719--743.
[16]
L. Gonzalez-Vega, T. Recio, H. Lombardi, M. -F. Roy: "Sturm-Habicht Sequences, Determinants and Real Roots of Univariate Polynomials". In: B. Caviness, J. Johnson (eds.) Quantifier Elimination and Cylindrical Algebraic Decomposition, 300--316. Springer, 1998.
[17]
H. Hong: "An Efficient Method for Analyzing the Topology of Plane Real Algebraic Curves". Math. and Comp. Sim. 42 (1996) 571--582.
[18]
J. R. Johnson: "Algorithms for polynomial real root isolation". In: B. F. Caviness, J. R. Johnson (eds.) Quantifier Elimination and Cylindrical Algebraic Decomposition, 269--299. Springer, 1998.
[19]
J. R. Johnson, W. Krandick, K. Lynch, D. G. Richardson, A. D. Ruslanov: "High-Performance Implementations of the Descartes Method". In: Proc. of the 2006 Int. Symp. on Symb. and Alg. Comp. (ISSAC 2006). ACM, 2006 154--161.
[20]
M. Kerber: Analysis of Real Algebraic Plane Curves. Master's thesis, Universität des Saarlandes, Saarbrücken, Germany, 2006.
[21]
W. Krandick, K. Mehlhorn: "New Bounds for the Descartes Method". J. Symb. Comp. 41 (2006) 49--66.
[22]
S. McCallum: "Factors of Iterated Resultants and Discriminants". J. Symb. Comp. 27 (1999) 367--385.
[23]
F. Rouillier, P. Zimmermann: "Efficient isolation of {a} polynomial's real roots". J. Comp. and Appl. Math. 162 (2004) 33--50.
[24]
R. Seidel, N. Wolpert: "On the Exact Computation of the Topology of Real Algebraic Curves". In: Proc. of the 21st Ann. ACM Symp. on Comp. Geom. (SCG 2005). ACM, 2005 107--115.
[25]
A. Strzebonski: "Cylindrical Algebraic Decomposition using validated numerics". J. Symb. Comp. 41 (2006) 1021--1038.

Cited By

View all
  • (2023)Algorithm for Connectivity Queries on Real Algebraic CurvesProceedings of the 2023 International Symposium on Symbolic and Algebraic Computation10.1145/3597066.3597081(345-353)Online publication date: 24-Jul-2023
  • (2022)Bounds for Polynomials on Algebraic Numbers and Application to Curve TopologyDiscrete & Computational Geometry10.1007/s00454-021-00353-w67:3(631-697)Online publication date: 15-Feb-2022
  • (2022)On the Topology of the Intersection Curve of Two Real Parameterized Algebraic SurfacesNonlinear Analysis, Geometry and Applications10.1007/978-3-031-04616-2_21(499-515)Online publication date: 6-Apr-2022
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
ISSAC '07: Proceedings of the 2007 international symposium on Symbolic and algebraic computation
July 2007
406 pages
ISBN:9781595937438
DOI:10.1145/1277548
  • General Chair:
  • Dongming Wang
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 29 July 2007

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. algebraic curves
  2. cylindrical algebraic decomposition
  3. descartes method
  4. exact geometric computation
  5. sturm-habicht sequence
  6. topology computation

Qualifiers

  • Article

Conference

ISSAC07
Sponsor:
ISSAC07: International Symposium on Symbolic and Algebraic Computation
July 29 - August 1, 2007
Ontario, Waterloo, Canada

Acceptance Rates

Overall Acceptance Rate 395 of 838 submissions, 47%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)1
  • Downloads (Last 6 weeks)0
Reflects downloads up to 12 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2023)Algorithm for Connectivity Queries on Real Algebraic CurvesProceedings of the 2023 International Symposium on Symbolic and Algebraic Computation10.1145/3597066.3597081(345-353)Online publication date: 24-Jul-2023
  • (2022)Bounds for Polynomials on Algebraic Numbers and Application to Curve TopologyDiscrete & Computational Geometry10.1007/s00454-021-00353-w67:3(631-697)Online publication date: 15-Feb-2022
  • (2022)On the Topology of the Intersection Curve of Two Real Parameterized Algebraic SurfacesNonlinear Analysis, Geometry and Applications10.1007/978-3-031-04616-2_21(499-515)Online publication date: 6-Apr-2022
  • (2021)On the Complexity of Computing the Topology of Real Algebraic Space CurvesJournal of Systems Science and Complexity10.1007/s11424-020-9164-2Online publication date: 12-Jan-2021
  • (2020)Isotopic Meshing of a Real Algebraic Space CurveJournal of Systems Science and Complexity10.1007/s11424-020-8378-733:4(1275-1296)Online publication date: 8-Aug-2020
  • (2019)Representing rational curve segments and surface patches using semi-algebraic setsComputer Aided Geometric Design10.1016/j.cagd.2019.10177074:COnline publication date: 1-Oct-2019
  • (2015)Root refinement for real polynomials using quadratic interval refinementJournal of Computational and Applied Mathematics10.1016/j.cam.2014.11.031280:C(377-395)Online publication date: 15-May-2015
  • (2015)On the Topology and Visualization of Plane Algebraic CurvesProceedings of the 17th International Workshop on Computer Algebra in Scientific Computing - Volume 930110.1007/978-3-319-24021-3_19(245-259)Online publication date: 14-Sep-2015
  • (2014)Isotopic epsilon-meshing of real algebraic space curvesProceedings of the 2014 Symposium on Symbolic-Numeric Computation10.1145/2631948.2631970(118-127)Online publication date: 28-Jul-2014
  • (2014)On the computation of the topology of plane curvesProceedings of the 39th International Symposium on Symbolic and Algebraic Computation10.1145/2608628.2608670(130-137)Online publication date: 23-Jul-2014
  • Show More Cited By

View Options

Get Access

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media