Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/1250790.1250833acmconferencesArticle/Chapter ViewAbstractPublication PagesstocConference Proceedingsconference-collections
Article

Interpolation of depth-3 arithmetic circuits with two multiplication gates

Published: 11 June 2007 Publication History
First page of PDF

References

[1]
{1} A. Beimel, F. Bergadano, N. H. Bshouty, E. Kushilevitz, and S. Varricchio. Learning functions represented as multiplicity automata. J. ACM, 47(3):506-530, 2000.
[2]
{2} M. Ben-Or and P. Tiwari. A deterministic algorithm for sparse multivariate polynominal interpolation (extended abstract). In 20th STOC, pages 301-309, 1988.
[3]
{3} F. Bergadano, N. H. Bshouty, C. Tamon, and S. Varricchio. On learning branching programs and small depth circuits. In 3rd EuroCOLT, volume 1208 of LNCS, pages 150-161, 1997.
[4]
{4} F. Bergadano, N. H. Bshouty, and S. Varricchio. Learning multivariate polynomials from substitution and equivalence queries. ECCC, 3(8), 1996.
[5]
{5} D. Bshouty and N. H. Bshouty. On interpolating arithmetic read-once formulas with exponentiation. JCSS, 56(1):112-124, 1998.
[6]
{6} N. H. Bshouty and R. Cleve. Interpolating arithmetic read-once formulas in parallel. SICOMP, 27(2):401-413, 1998.
[7]
{7} N. H. Bshouty, T. R. Hancock, and L. Hellerstein. Learning arithmetic read-once formulas. SICOMP, 24(4):706-735, 1995.
[8]
{8} Z. Dvir and A. Shpilka. Locally decodable codes with 2 queries and polynomial identity testing for depth 3 circuits. In 37th STOC, pages 592-601, 2005.
[9]
{9} O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions. J. ACM, 33(4):792-807, 1986.
[10]
{10} O. Goldreich, H. J. Karloff, L. J. Schulman, and L. Trevisan. Lower bounds for linear locally decodable codes and private information retrieval. In 17th CCC, pages 175-183, 2002.
[11]
{11} D. Grigoriev, M. Karpinski, and M. F. Singer. Computational complexity of sparse rational interpolation. SICOMP, 23(1):1-11, 1994.
[12]
{12} T. R. Hancock and L. Hellerstein. Learning read-once formulas over fields and extended bases. In 4th COLT, pages 326-336, 1991.
[13]
{13} E. Kaltofen. Polynomial-time reductions from multivariate to bi- and univariate integral polynomial factorization. SICOMP, 14(2):469-489, 1985.
[14]
{14} E. Kaltofen. Effective Noether irreducibility forms and applications. JCSS, 50(2):274-295, 1995.
[15]
{15} E. Kaltofen and B. M. Trager. Computing with polynomials given by black boxes for their evaluations: Greatest common divisors, factorization, separation of numerators and denominators. J. of Symbolic Comp., 9(3):300-320, 1990.
[16]
{16} M. Karpinski and I. Shparlinski. On some approximation problems concerning sparse polynomials over finite fields. TCS, 157(2):259-266, 1996.
[17]
{17} J. Katz and L. Trevisan. On the efficiency of local decoding procedures for error-correcting codes. In 32nd STOC, pages 80-86, 2000.
[18]
{18} M. J. Kearns and L. G. Valiant. Cryptographic limitations on learning boolean formulae and finite automata. J. ACM, 41(1):67-95, 1994.
[19]
{19} M. Kharitonov. Cryptographic lower bounds for learnability of boolean functions on the uniform distribution. JCSS, 50(3):600-610, 1995.
[20]
{20} A. Klivans and A. Shpilka. Learning restricted models of arithmetic circuits. Theory of Computing, 2(10):185-206, 2006.
[21]
{21} A. R. Klivans and D. Spielman. Randomness efficient identity testing of multivariate polynomials. In 33rd STOC, pages 216-223. ACM Press, 2001.
[22]
{22} M. Krause and S. Lucks. Pseudorandom functions in TC0 and cryptographic limitations to proving lower bounds. Computational Complexity, 10(4):297-313, 2001.
[23]
{23} Y. Mansour. Randomized interpolation and approximation of sparse polynomials. SICOMP, 24(2):357-368, 1995.
[24]
{24} M. Naor and O. Reingold. Number-theoretic constructions of efficient pseudo-random functions. J. ACM, 51(2):231-262, 2004.
[25]
{25} A. A. Razborov and S. Rudich. Natural proofs. JCSS., 55(1):24-35, 1997.
[26]
{26} R. E. Schapire and L. M. Sellie. Learning sparse multivariate polynomials over a field with queries and counterexamples. JCSS, 52(2):201-213, 1996.
[27]
{27} A. Shpilka and A. Wigderson. Depth-3 arithmetic circuits over fields of characteristic zero. Computational Complexity, 10(1):1-27, 2001.

Cited By

View all
  • (2024)Computing the Degree of Black-Box Polynomials, with ApplicationsHandbook of Visual, Experimental and Computational Mathematics10.1007/978-3-030-93954-0_54-1(1-16)Online publication date: 1-Jun-2024
  • (2020)Learning sums of powers of low-degree polynomials in the non-degenerate case2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS)10.1109/FOCS46700.2020.00087(889-899)Online publication date: Nov-2020
  • (2019)Reconstruction of non-degenerate homogeneous depth three circuitsProceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing10.1145/3313276.3316360(413-424)Online publication date: 23-Jun-2019
  • Show More Cited By
  1. Interpolation of depth-3 arithmetic circuits with two multiplication gates

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    STOC '07: Proceedings of the thirty-ninth annual ACM symposium on Theory of computing
    June 2007
    734 pages
    ISBN:9781595936318
    DOI:10.1145/1250790
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 11 June 2007

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. arithmetic circuits
    2. depth-3
    3. exact learning
    4. interpolation

    Qualifiers

    • Article

    Conference

    STOC07
    Sponsor:
    STOC07: Symposium on Theory of Computing
    June 11 - 13, 2007
    California, San Diego, USA

    Acceptance Rates

    Overall Acceptance Rate 1,469 of 4,586 submissions, 32%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)3
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 22 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Computing the Degree of Black-Box Polynomials, with ApplicationsHandbook of Visual, Experimental and Computational Mathematics10.1007/978-3-030-93954-0_54-1(1-16)Online publication date: 1-Jun-2024
    • (2020)Learning sums of powers of low-degree polynomials in the non-degenerate case2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS)10.1109/FOCS46700.2020.00087(889-899)Online publication date: Nov-2020
    • (2019)Reconstruction of non-degenerate homogeneous depth three circuitsProceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing10.1145/3313276.3316360(413-424)Online publication date: 23-Jun-2019
    • (2018)Reconstruction of Full Rank Algebraic Branching ProgramsACM Transactions on Computation Theory10.1145/328242711:1(1-56)Online publication date: 21-Nov-2018
    • (2017)Reconstruction of full rank algebraic branching programsProceedings of the 32nd Computational Complexity Conference10.5555/3135595.3135616(1-61)Online publication date: 9-Jul-2017
    • (2016)Reconstruction of real depth-3 circuits with top fan-in 2Proceedings of the 31st Conference on Computational Complexity10.5555/2982445.2982476(1-53)Online publication date: 29-May-2016
    • (2013)Random Arithmetic Formulas Can Be Reconstructed Efficiently2013 IEEE Conference on Computational Complexity10.1109/CCC.2013.10(1-9)Online publication date: Jun-2013
    • (2012)Affine projections of polynomialsProceedings of the forty-fourth annual ACM symposium on Theory of computing10.1145/2213977.2214036(643-662)Online publication date: 19-May-2012
    • (2009)Blackbox Polynomial Identity Testing for Depth 3 CircuitsProceedings of the 2009 50th Annual IEEE Symposium on Foundations of Computer Science10.1109/FOCS.2009.67(198-207)Online publication date: 25-Oct-2009
    • (2009)Deterministically testing sparse polynomial identities of unbounded degreeInformation Processing Letters10.1016/j.ipl.2008.09.029109:3(187-192)Online publication date: 1-Jan-2009
    • Show More Cited By

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media