Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/1137856.1137918acmconferencesArticle/Chapter ViewAbstractPublication PagessocgConference Proceedingsconference-collections
Article

Splitting (complicated) surfaces is hard

Published: 05 June 2006 Publication History

Abstract

Let M be an orientable combinatorial surface without boundary. A cycle on M is splitting if it has no self-intersections and it partitions M into two components, neither of which is homeomorphic to a disk. In other words, splitting cycles are simple, separating, and non-contractible. We prove that finding the shortest splitting cycle on a combinatorial surface is NP-hard but fixed-parameter tractable with respect to the surface genus. Specifically, we describe an algorithm to compute the shortest splitting cycle in gO(g)n log n time.

References

[1]
E. M. Arkin, S. Khuller, and J. S. B. Mitchell. Geometric knapsack problems. Algorithmica 10:399--427, 1993.]]
[2]
J. Blömer. Computing sums of radicals in polynomial time. Proc. 32nd Annu. IEEE Sympos. Found. Comput. Sci., 670--677, 1991.]]
[3]
S. Cabello. Many distances in planar graphs. Proc. 17th Annu. ACM-SIAM Sympos. Discrete Algorithms, 1213--1220, 2006.]]
[4]
S. Cabello and B. Mohar. Finding shortest non-separating and non-contractible cycles for topologically embedded graphs. Proc. 13th Annu. European Sympos. Algorithms, 131--142, 2005. Lecture Notes in Computer Science 3669, Springer-Verlag.]]
[5]
J. Chen and Y. Han. Shortest paths on a polyhedron, part I: Computing shortest paths. Int. J. Comput. Geom. Appl. 6(2):127--144, 1996.]]
[6]
è. Colin de Verdière and J. Erickson. Tightening non-simple paths and cycles on surfaces. Proc. 17th Annu. ACM-SIAM Sympos. Discrete Algorithms, 192--201, 2006.]]
[7]
è. Colin de Verdière and F. Lazarus. Optimal pants decompositions and shortest homotopic cycles on an orientable surface. Proc. 11th Sympos. Graph Drawing, 478--490, 2003. Lecture Notes Comput. Sci. 2912, Springer-Verlag.]]
[8]
è. Colin de Verdière and F. Lazarus. Optimal systems of loops on an orientable surface. Discrete Comput. Geom. 33(3):507--534, 2005.]]
[9]
P. Eades and D. Rappaport. The complexity of computing minimum separating polygons. Pattern Recogn. Lett. 14(9):715--718, 1993.]]
[10]
D. Eppstein. Finding the k shortest paths. SIAM J. Computing 28(2):652--673, 1998.]]
[11]
D. B. A. Epstein. Curves on 2-manifolds and isotopies. Acta Mathematica 115:83--107, 1966.]]
[12]
J. Erickson and S. Har-Peled. Optimally cutting a surface into a disk. Discrete Comput. Geom. 31(1):37--59, 2004.]]
[13]
J. Erickson and K. Whittlesey. Greedy optimal homotopy and homology generators. Proc. 16th Annu. ACM-SIAM Sympos. Discrete Algorithms, 1038--1046, 2005.]]
[14]
G. N. Frederickson. Fast algorithms for shortest paths in planar graphs, with applications. SIAM J. Comput. 16(6):1004--1022, 1987.]]
[15]
J. Hass and P. Scott. Intersections of curves on surfaces. Israel J. Math. 51:90--120, 1985.]]
[16]
A. Hatcher. Algebraic Topology. Cambridge University Press, 2002. (http://www.math.cornell.edu/~hatcher/).]]
[17]
D. S. Johnson and C. H. Papadimitriou. Computational complexity and the traveling salesman problem. The Traveling Salesman Problem, 68--74, 1985. John Wiley & Sons.]]
[18]
M. Kutz. Computing shortest non-trivial cycles on orientable surfaces of bounded genus in almost linear time. These proceedings, 2006.]]
[19]
F. Lazarus, M. Pocchiola, G. Vegter, and A. Verroust. Computing a canonical polygonal schema of an orientable triangulated surface. Proc. 17th Annu. ACM Sympos. Comput. Geom., 80--89, 2001.]]
[20]
J. S. B. Mitchell, D. M. Mount, and C. H. Papadimitriou. The discrete geodesic problem. SIAM J. Comput. 16(4):647--668, 1987.]]
[21]
B. Mohar and C. Thomassen. Graphs on Surfaces. Johns Hopkins University Press, 2001.]]
[22]
J. Stillwell. Classical Topology and Combinatorial Group Theory. Springer-Verlag, New York, 1993.]]
[23]
J. Takahashi, H. Suzuki, and T. Nishizeki. Shortest noncrossing paths in plane graphs. Algorithmica 16:339--357, 1996.]]
[24]
A. Zomorodian. Topology for Computing. Cambridge University Press, 2005.]]

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
SCG '06: Proceedings of the twenty-second annual symposium on Computational geometry
June 2006
500 pages
ISBN:1595933409
DOI:10.1145/1137856
  • Program Chairs:
  • Nina Amenta,
  • Otfried Cheong
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 05 June 2006

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. combinatorial surface
  2. computational topology
  3. splitting cycle
  4. topological graph theory

Qualifiers

  • Article

Conference

SoCG06

Acceptance Rates

Overall Acceptance Rate 625 of 1,685 submissions, 37%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)1
  • Downloads (Last 6 weeks)0
Reflects downloads up to 09 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2016)Some Triangulated Surfaces without Balanced SplittingGraphs and Combinatorics10.1007/s00373-016-1735-632:6(2339-2353)Online publication date: 1-Nov-2016
  • (2010)Finding one tight cycleACM Transactions on Algorithms10.1145/1824777.18247816:4(1-13)Online publication date: 3-Sep-2010
  • (2009)Minimum cuts and shortest homologous cyclesProceedings of the twenty-fifth annual symposium on Computational geometry10.1145/1542362.1542426(377-385)Online publication date: 8-Jun-2009
  • (2008)Finding one tight cycleProceedings of the nineteenth annual ACM-SIAM symposium on Discrete algorithms10.5555/1347082.1347140(527-531)Online publication date: 20-Jan-2008
  • (2008)Testing contractibility in planar rips complexesProceedings of the twenty-fourth annual symposium on Computational geometry10.1145/1377676.1377721(251-259)Online publication date: 9-Jun-2008
  • (2007)Multiple source shortest paths in a genus g graphProceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms10.5555/1283383.1283394(89-97)Online publication date: 7-Jan-2007
  • (2007)Geometrically Accurate Topology-Correction of Cortical Surfaces Using Nonseparating LoopsIEEE Transactions on Medical Imaging10.1109/TMI.2006.88736426:4(518-529)Online publication date: Apr-2007
  • (2006)Computing shortest non-trivial cycles on orientable surfaces of bounded genus in almost linear timeProceedings of the twenty-second annual symposium on Computational geometry10.1145/1137856.1137919(430-438)Online publication date: 5-Jun-2006

View Options

Get Access

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media