Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/1137856.1137914acmconferencesArticle/Chapter ViewAbstractPublication PagessocgConference Proceedingsconference-collections
Article

On overlays and minimization diagrams

Published: 05 June 2006 Publication History

Abstract

The overlay of 2≤md minimization diagrams of n surfaces in Rd is isomorphic to a substructure of a suitably constructed minimization diagram of mn surfaces in Rd+m−1. This elementary observation leads to a new bound on the complexity of the overlay of minimization diagrams of collections of d-variate semi-algebraic surfaces, a tight bound on the compleity of the overlay of minimization diagrams of collections of hyperplanes, and faster algorithms for constructing such overlays. Further algoithmic implications are discussed.

References

[1]
P. K. Agarwal, B. Aronov, S. Har-Peled, and M. Sharir. Approximation and exact algorithms for minimum-width annuli and shells. Discrete Comput. Geom., 24(4):687--705, 2000.]]
[2]
P. K. Agarwal, B. Aronov, and M. Sharir. Computing envelopes in four dimensions with applications. SIAM J. Comput., 26:1714--1732, 1997.]]
[3]
P. K. Agarwal, B. Aronov, and M. Sharir. Exact and approximation algorithms for minimum-width cylindrical shells. Discrete Comput. Geom., 26:307--320, 2001.]]
[4]
P. K. Agarwal, O. Schwarzkopf, and M. Sharir. The overlay of lower envelopes and its applications. Discrete Comput. Geom., 15:1--13, 1996.]]
[5]
P. K. Agarwal and M. Sharir. Arrangements and their applications. In J.-R. Sack and J. Urrutia, editors, Handbook of Computational Geometry, pages 49--119. Elsevier Science Publishers B.V. North-Holland, Amsterdam, 2000.]]
[6]
S. Basu, R. Pollack, and M.-F. Roy. Algorithms in Real Algebraic Geometry. Springer Verlag, Berlin, 2003.]]
[7]
P. J. Besl and N. D. McKay. A method for registration of 3-d shapes. IEEE Trans. Pattern Anal. Mach. Intell., 14(2):239--256, 1992.]]
[8]
T. M. Chan. Approximating the diameter, width, smallest enclosing cylinder and minimum-width annulus. Internat. J. Comput. Geom. Appl., 12(2):67--85, 2002.]]
[9]
B. Chazelle. An optimal convex hull algorithm in any fixed dimension. Discrete Comput. Geom., 10:377--409, 1993.]]
[10]
K. L. Clarkson. A randomized algorithm for closest-point queries. SIAM J. Comput., 17:830--847, 1988.]]
[11]
C. A. Duncan, M. T. Goodrich, and E. A. Ramos. Efficient approximation and optimization algorithms for computational metrology. In Proc. 8th ACM-SIAM Annu. Sympos. Discrete Algo., pages 121--130, 1997.]]
[12]
H. Ebara, N. Fukuyama, H. Nakano, and Y. Nakanishi. Roundness algorithms using the Voronoi diagrams. In Abstracts 1st Canad. Conf. Comput. Geom., page 41, 1989.]]
[13]
H. Edelsbrunner. The upper envelope of piecewise linear functions: Tight complexity bounds in higher dimensions. Discrete Comput. Geom., 4:337--343, 1989.]]
[14]
H. Edelsbrunner and R. Seidel. Voronoi diagrams and arrangements. Discrete Comput. Geom., 1:25--44, 1986.]]
[15]
E. Ezra and M. Sharir. Bounds for the ICP algorithm. These proceedings, 2005.]]
[16]
L. J. Guibas, D. Halperin, J. Matoušek, and M. Sharir. On vertical decomposition of arrangements of hyperplanes in four dimensions. Discrete Comput. Geom., 14:113--122, 1995.]]
[17]
V. Koltun and M. Sharir. The partition technique for overlays of envelopes. SIAM J. Comput., 32:841--863, 2003.]]
[18]
V. Koltun and C. Wenk. Matching polyhedral terrains using overlays of envelopes. Algorithmica, 41:159--183, 2005.]]
[19]
P. McMullen. The maximal number of faces of a convex polytope. Mathematika, 17:179--184, 1970.]]
[20]
M. Sharir. Almost tight upper bounds for lower envelopes in higher dimensions. Discrete Comput. Geom., 12:327--345, 1994.]]
[21]
M. Sharir and P. K. Agarwal. Davenport-Schinzel Sequences and Their Geometric Applications. Cambridge University Press, New York, 1995.]]
[22]
G. M. Ziegler. Lectures on Polytopes, volume 152 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1995. Revised edition 1998.]]

Cited By

View all
  • (2018)On the performance of the ICP algorithmComputational Geometry: Theory and Applications10.1016/j.comgeo.2007.10.00741:1-2(77-93)Online publication date: 29-Dec-2018
  • (2006)On the ICP algorithmProceedings of the twenty-second annual symposium on Computational geometry10.1145/1137856.1137873(95-104)Online publication date: 5-Jun-2006

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
SCG '06: Proceedings of the twenty-second annual symposium on Computational geometry
June 2006
500 pages
ISBN:1595933409
DOI:10.1145/1137856
  • Program Chairs:
  • Nina Amenta,
  • Otfried Cheong
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 05 June 2006

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Voronoi diagrams
  2. arrangements
  3. hyperplanes
  4. lower envelopes
  5. minimization diagrams
  6. overlays
  7. power diagrams

Qualifiers

  • Article

Conference

SoCG06

Acceptance Rates

Overall Acceptance Rate 625 of 1,685 submissions, 37%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 16 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2018)On the performance of the ICP algorithmComputational Geometry: Theory and Applications10.1016/j.comgeo.2007.10.00741:1-2(77-93)Online publication date: 29-Dec-2018
  • (2006)On the ICP algorithmProceedings of the twenty-second annual symposium on Computational geometry10.1145/1137856.1137873(95-104)Online publication date: 5-Jun-2006

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media