Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/1198555.1198574acmconferencesArticle/Chapter ViewAbstractPublication PagessiggraphConference Proceedingsconference-collections
Article

A virtual node algorithm for changing mesh topology during simulation

Published: 31 July 2005 Publication History

Abstract

We propose a virtual node algorithm that allows material to separate along arbitrary (possibly branched) piecewise linear paths through a mesh. The material within an element is fragmented by creating several replicas of the element and assigning a portion of real material to each replica. This results in elements that contain both real material and empty regions. The missing material is contained in another copy (or copies) of this element. Our new virtual node algorithm automatically determines the number of replicas and the assignment of material to each. Moreover, it provides the degrees of freedom required to simulate the partially or fully fragmented material in a fashion consistent with the embedded geometry. This approach enables efficient simulation of complex geometry with a simple mesh, i.e. the geometry need not align itself with element boundaries. It also alleviates many shortcomings of traditional La-grangian simulation techniques for meshes with changing topology. For example, slivers do not require small CFL time step restrictions since they are embedded in well shaped larger elements. To enable robust simulation of embedded geometry, we propose new algorithms for handling rigid body and self collisions. In addition, we present several mechanisms for influencing and controlling fracture with grain boundaries, prescoring, etc. We illustrate our method for both volumetric and thin-shell simulations.

References

[1]
Aivazis, M., Goddard, W., Meiron, D., Ortiz, M., Pool, J., and Shepherd, J. 2000. A virtual test facility for simulating the dynamic response of materials. Comput. in Sci, and Eng. 2, 42--53.
[2]
Armero, F., and Love, E. 2003. An arbitrary lagrangian-eulerian finite element method for finite strain plasticity. Int. J. Num. Meth. Eng. 57, 471--508.
[3]
Baraff, D., and Witkin, A. 1998. Large steps in cloth simulation. In Proc. SIGGRAPH 98, 1--12.
[4]
Baraff, D., Witkin, A., and Kass, M. 2003. Untangling cloth. ACM Trans. Graph. (SIGGRAPH Proc.) 22, 862--870.
[5]
Belytschko, T., Chen, H., Xu, J., and Zi, G. 2003. Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment. Int. J. Num. Meth. Eng. 58, 1873--1905.
[6]
Bessette, G., Becker, E., Taylor, L., and Littlefield, D. 2003. Modeling of impact problems using an h-adaptive, explicit lagrangian finite element method in three dimensions. Comput. Meth. in Appl. Mech. and Eng. 192, 1649--1679.
[7]
Bielser, D., and Gross, M. 2000. Interactive simulation of surgical cuts. In Pacific Graph., 116--125.
[8]
Bielser, D., Glardon, P., Teschner, M., and Gross, M. 2003. A state machine for real-time cutting of tetrahedral meshes. In Pacific Graph., 377--386.
[9]
Bouchard, P., Bay, F., and Chastel, Y. 2003. Numerical modelling of crack propagation: automatic remeshing and comparison of different criteria. Comput. Meth. in Appl. Mech. and Eng. 192, 3887--3908.
[10]
Bridson, R., Fedkiw, R., and Anderson, J. 2002. Robust treatment of collisions, contact and friction for cloth animation. ACM Trans. Graph. (SIGGRAPH Proc.) 21, 594--603.
[11]
Bridson, R., Marino, S., and Fedkiw, R. 2003. Simulation of clothing with folds and wrinkles. In Proc. of the 2003 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 28--36.
[12]
Camacho, G., and Ortiz, M. 1997. Adaptive Lagrangian modelling of ballistic penetration of metallic targets. Comput. Meth. in Appl. Mech. and Eng. 142, 269--301.
[13]
Capell, S., Green, S., Curless, B., Duchamp, T., and Popović, Z. 2002. Interactive skeleton-driven dynamic deformations. ACM Trans. Graph. (SIGGRAPH Proc.) 21, 586--593.
[14]
Capell, S., Green, S., Curless, B., Duchamp, T., and Popović, Z. 2002. A multiresolution framework for dynamic deformations. In ACM SIGGRAPH Symp. on Comput. Anim., ACM Press, 41--48.
[15]
Chen, D., and Zeltzer, D. 1992. Pump it up: Computer animation of a biomechanically based model of muscle using the finite element method. Comput. Graph. (SIGGRAPH Proc.), 89--98.
[16]
Choi, K.-J., and Ko, H.-S. 2002. Stable but responsive cloth. ACM Trans. Graph. (SIGGRAPH Proc.) 21, 604--611.
[17]
Cutler, B., Dorsey, J., McMillan, L., Muller, M., and Jagnow, R. 2002. A procedural approach to authoring solid models. ACM Trans. Graph. (SIGGRAPH Proc.) 21, 3, 302--311.
[18]
Debunne, G., Desbrun, M., Cani, M., and Barr, A. 2001. Dynamic real-time deformations using space & time adaptive sampling. In Proc. SIGGRAPH 2001, vol. 20, 31--36.
[19]
Etzmuss, O., Keckeisen, M., and Strasser, W. 2003. A fast finite element solution for cloth modelling. In Pacific Graph., 244--251.
[20]
Faloutsos, P., van de Panne, M., and Terzopoulos, D. 1997. Dynamic free-form deformations for animation synthesis. IEEE Trans. on Vis. and Comput. Graphics 3, 3, 201--214.
[21]
Fedkiw, R., Aslam, T., Merriman, B., and Osher, S. 1999. A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys. 152, 457--492.
[22]
Forest, C., Delingette, H., and Ayache, N. 2002. Removing tetrahedra from a manifold mesh. In Computer Animation, 225--229.
[23]
Gourret, J.-P., Magnenat-Thalmann, N., and Thalmann, D. 1989. Simulation of object and human skin deformations in a grasping task. Comput. Graph. (SIGGRAPH Proc.), 21--30.
[24]
Grinspun, E., Krysl, P., and Schroder, P. 2002. CHARMS: A simple framework for adaptive simulation. ACM Trans. Graph. (SIGGRAPH Proc.) 21, 281--290.
[25]
Grinspun, E., Hirani, A., Desbrun, M., and Schroder, P. 2003. Discrete shells. In Proc. of the 2003 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 62--67.
[26]
Hirota, K., Tanoue, Y., and Kaneko, T. 1998. Generation of crack patterns with a physical model. The Vis. Comput. 14, 126--187.
[27]
Hirt, C., Amsden, A., and Cook, J. 1974. An arbitrary Lagrangian-Eulerian computing method for all flow speeds. J. Comput. Phys. 135, 227--253.
[28]
Irving, G., Teran, J., and Fedkiw, R. 2004. Invertible finite elements for robust simulation of large deformation. Submitted to the Symposium on Computer Animation (SCA).
[29]
James, D., and Fatahalian, K. 2003. Precomputing interactive dynamic deformable scenes. ACM Trans. Graph. (SIGGRAPH Proc.) 22, 879--887.
[30]
James, D., and Pai, D. 2002. DyRT: Dynamic response textures for real time deformation simulation with graphics hardware. ACM Trans. Graph. (SIGGRAPH Proc.) 21, 582--585.
[31]
Jirasek, M., and Zimmermann, T. 2001. Embedded crack model: II. combination with smeared cracks. Int. J. Num. Meth. Eng. 50, 1291--1305.
[32]
Mazarak, O., Martins, C., and Amanatides, J. 1999. Animating exploding objects. In Proc. of Graph. Interface 1999, 211--218.
[33]
Molino, N., Bridson, R., Teran, J., and Fedkiw, R. 2003. A crystalline, red green strategy for meshing highly deformable objects with tetrahedra. In 12th Int. Meshing Roundtable, 103--114.
[34]
Mor, A., and Kanade, T. 2000. Modifying soft tissue models: progressive cutting with minimal new element creation. In MICCAI, 598--607.
[35]
Muller, M., and Gross, M. 2004. Interactive virtual materials. In Grap. Interface.
[36]
Muller, M., McMillan, L., Dorsey, J., and Jagnow, R. 2001. Real-time simulation of deformation and fracture of stiff materials. In Comput. Anim. and Sim. '01, Proc. Eurographics Workshop, Eurographics Assoc., 99--111.
[37]
Muller, M., Dorsey, J., McMillan, L., Jagnow, R., and Cutler, B. 2002. Stable real-time deformations. In ACM SIGGRAPH Symp. on Comput. Anim., 49--54.
[38]
Muller, M., Teschner, M., and Gross, M. 2004. Physically-based simulation of objects represented by surface meshes. In Proc. Comput. Graph. Int., 156--165.
[39]
Museth, K., Breen, D., Whitaker, R., and Barr, A. 2002. Level set surface editing operators. ACM Trans. Graph. (SIGGRAPH Proc.) 21, 3, 330--338.
[40]
Neff, M., and Fiume, E. 1999. A visual model for blast waves and fracture. In Proc. of Graph. Interface 1999, 193--202.
[41]
Norton, A., Turk, G., Bacon, B., Gerth, J., and Sweeney, P. 1991. Animation of fracture by physical modeling. Vis. Comput. 7, 4, 210--219.
[42]
O'Brien, J., and Hodgins, J. 1999. Graphical modeling and animation of brittle fracture. In Proc. SIGGRAPH 99, vol. 18, 137--146.
[43]
O'Brien, J., Bargteil, A., and Hodgins, J. 2002. Graphical modeling of ductile fracture. ACM Trans. Graph. (SIGGRAPH Proc.) 21, 291--294.
[44]
Ortiz, M., and Pandolfi, A. 1999. Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. Int. J. Num. Meth. Eng. 44, 1267--1282.
[45]
Perry, R., and Frisken, S. 2001. Kizamu: a system for sculpting digital characters. In Proc. SIGGRAPH 2001, vol. 20, 47--56.
[46]
Rankine, W. 1872. Applied mechanics. Charles Griffen and Company, London.
[47]
Sederberg, T., and Parry, S. 1986. Free-form deformations of solid geometric models. Comput. Graph. (SIGGRAPH Proc.), 151--160.
[48]
Smith, J., Witkin, A., and Baraff, D. 2001. Fast and controllable simulation of the shattering of brittle objects. In Comput. Graphics Forum, D. Duke and R. Scopigno, Eds., vol. 20(2). Blackwell Publishing, 81--91.
[49]
Tabiei, A., and Wu, J. 2003. Development of the DYNA3D simulation code with automated fracture procedure for brick elements. Int. J. Num. Meth. Eng. 57, 1979--2006.
[50]
Teran, J., Salinas-Blemker, S., Ng, V., and Fedkiw, R. 2003. Finite volume methods for the simulation of skeletal muscle. In Proc. of the 2003 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 68--74.
[51]
Terzopoulos, D., and Fleischer, K. 1988. Deformable models. The Visual Computer, 4, 306--331.
[52]
Terzopoulos, D., and Fleischer, K. 1988. Modeling inelastic deformation: viscoelasticity, plasticity, fracture. Comput. Graph. (SIGGRAPH Proc.), 269--278.
[53]
Terzopoulos, D., Platt, J., Barr, A., and Fleischer, K. 1987. Elastically deformable models. Comput. Graph. (Proc. SIGGRAPH 87) 21, 4, 205--214.
[54]
Treuille, A., McNamara, A., Popovic, Z., and Stam, J. 2003. Keyframe control of smoke simulations. ACM Trans. Graph. (SIGGRAPH Proc.) 22, 716--723.
[55]
Ventura, G., Budyn, E., and Belytschko, T. 2003. Vector level sets for desription of propagating cracks in finite elements. Int. J. Num. Meth. Eng. 58, 1571--1592.
[56]
Wells, G., and Sluys, L. 2001. A new method for modelling cohesive cracks using finite elements. Int. J. Num. Meth. Eng. 50, 2667--2682.
[57]
Yngve, G., O'Brien, J., and Hodgins, J. 2000. Animating explosions. In Proc. SIGGRAPH 2000, vol. 19, 29--36.

Cited By

View all
  • (2023)Evaluating material point methods on problems involving free surfaces and strong gradientsInternational Journal for Numerical Methods in Engineering10.1002/nme.7414125:6Online publication date: 20-Dec-2023
  • (2022)Simulating Brittle Fracture with Material PointsACM Transactions on Graphics10.1145/352257341:5(1-20)Online publication date: 13-May-2022
  • (2020)Displacement‐Correlated XFEM for Simulating Brittle FractureComputer Graphics Forum10.1111/cgf.1395339:2(569-583)Online publication date: 13-Jul-2020
  • Show More Cited By

Index Terms

  1. A virtual node algorithm for changing mesh topology during simulation

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image ACM Conferences
      SIGGRAPH '05: ACM SIGGRAPH 2005 Courses
      July 2005
      7157 pages
      ISBN:9781450378338
      DOI:10.1145/1198555
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Sponsors

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 31 July 2005

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. changing mesh topology
      2. finite elements
      3. fracture
      4. sculpting
      5. virtual surgery

      Qualifiers

      • Article

      Acceptance Rates

      Overall Acceptance Rate 1,822 of 8,601 submissions, 21%

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)3
      • Downloads (Last 6 weeks)1
      Reflects downloads up to 14 Nov 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2023)Evaluating material point methods on problems involving free surfaces and strong gradientsInternational Journal for Numerical Methods in Engineering10.1002/nme.7414125:6Online publication date: 20-Dec-2023
      • (2022)Simulating Brittle Fracture with Material PointsACM Transactions on Graphics10.1145/352257341:5(1-20)Online publication date: 13-May-2022
      • (2020)Displacement‐Correlated XFEM for Simulating Brittle FractureComputer Graphics Forum10.1111/cgf.1395339:2(569-583)Online publication date: 13-Jul-2020
      • (2020)Real‐time visual and physical cutting of a meshless model deformed on a background gridComputer Animation and Virtual Worlds10.1002/cav.192931:6Online publication date: 8-Jun-2020
      • (2019)CD-MPMACM Transactions on Graphics10.1145/3306346.332294938:4(1-15)Online publication date: 12-Jul-2019
      • (2018)A moving least squares material point method with displacement discontinuity and two-way rigid body couplingACM Transactions on Graphics10.1145/3197517.320129337:4(1-14)Online publication date: 30-Jul-2018
      • (2018)Modified Extended Finite Element Methods for Gas Flow in Fractured Reservoirs: A Pseudo-Pressure ApproachJournal of Energy Resources Technology10.1115/1.4039327140:7Online publication date: 29-Mar-2018
      • (2017)Adaptive Physically Based Models in Computer GraphicsComputer Graphics Forum10.1111/cgf.1294136:6(312-337)Online publication date: 1-Sep-2017
      • (2015)A survey on object deformation and decomposition in computer graphicsComputers and Graphics10.1016/j.cag.2015.06.00452:C(18-32)Online publication date: 1-Nov-2015
      • (2015)Virtual cutting of deformable objects based on efficient topological operationsThe Visual Computer: International Journal of Computer Graphics10.1007/s00371-015-1123-x31:6-8(831-841)Online publication date: 1-Jun-2015
      • Show More Cited By

      View Options

      Get Access

      Login options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media