Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/1188455.1188544acmconferencesArticle/Chapter ViewAbstractPublication PagesscConference Proceedingsconference-collections
Article

Scalable algorithms for molecular dynamics simulations on commodity clusters

Published: 11 November 2006 Publication History

Abstract

Although molecular dynamics (MD) simulations of biomolecular systems often run for days to months, many events of great scientific interest and pharmaceutical relevance occur on long time scales that remain beyond reach. We present several new algorithms and implementation techniques that significantly accelerate parallel MD simulations compared with current state-of-the-art codes. These include a novel parallel decomposition method and message-passing techniques that reduce communication requirements, as well as novel communication primitives that further reduce communication time. We have also developed numerical techniques that maintain high accuracy while using single precision computation in order to exploit processor-level vector instructions. These methods are embodied in a newly developed MD code called Desmond that achieves unprecedented simulation throughput and parallel scalability on commodity clusters. Our results suggest that Desmond's parallel performance substantially surpasses that of any previously described code. For example, on a standard benchmark, Desmond's performance on a conventional Opteron cluster with 2K processors slightly exceeded the reported performance of IBM's Blue Gene/L machine with 32K processors running its Blue Matter MD code.

References

[1]
G. Almasi, C. Archer, J. G. Castanos, et al., Design and Implementation of Message-Passing Services for the Blue Gene/L Supercomputer, IBM J. Res. & Dev., 49(2-3): 393--406, 2005.
[2]
I. T. Arkin, H. Xu, K. J. Bowers, et al., Mechanism of a Na+/H+ Antiporter, submitted, 2006.
[3]
K. J. Bowers, Speed Optimal Implementation of a Fully Relativistic 3D Particle Push with a Charge Conserving Current Accumulate on Modern Processors, presented at 18th International Conference on the Numerical Simulation of Plasmas, Cape Cod, MA, 2003.
[4]
K. J. Bowers, R. O. Dror, and D. E. Shaw, Overview of Neutral Territory Methods for the Parallel Evaluation of Pairwise Particle Interactions, J. Phys. Conf. Ser., 16: 300--304, 2005.
[5]
K. J. Bowers, R. O. Dror, and D. E. Shaw, The Midpoint Method for Parallelization of Particle Simulations, J. Chem. Phys., 124: 184109, 2006.
[6]
K. J. Bowers, R. O. Dror, and D. E. Shaw, Zonal Methods for the Parallel Execution of Range-Limited N-Body Problems, in press, J. Comput. Phys., 2006.
[7]
B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, et al., CHARMM: A Program for Macromolecular Energy, Minimization, and Dynamics Calculations, J. Comput. Chem., 4: 187--217, 1983.
[8]
C. L. Brooks, B. M. Pettit, and M. Karplus, Structural and Energetic Effects of Truncating Long Ranged Interactions in Ionic and Polar Fluids, J. Chem. Phys., 83(11): 5897--5908, 1985.
[9]
F. Cappello and D. Etiemble, MPI Versus MPI+OpenMP on the IBM SP for the NAS Benchmarks, presented at ACM/IEEE SC2000 Conference, Dallas, TX, 2000.
[10]
D. A. Case, T. E. Cheatham, III, T. Darden, et al., The Amber Biomolecular Simulation Programs, J. Comput. Chem., 26(16): 1668--1688, 2005.
[11]
E. Chow and D. Hysom, Assessing Performance of Hybrid MPI/OpenMP Programs on SMP Clusters, Lawrence Livermore National Laboratory UCRL-JC-143957, 2001.
[12]
T. Darden, D. York, and L. Pedersen, Particle Mesh Ewald: An N Log(N) Method for Ewald Sums in Large Systems, J. Chem. Phys., 98(12): 10089--10092, 1993.
[13]
Y. Duan and P. A. Kollman, Pathways to a Protein Folding Intermediate Observed in a 1-Microsecond Simulation in Aqueous Solution, Science, 282(5389): 740--744, 1998.
[14]
M. Eleftheriou, B. G. Fitch, A. Rayshubskiy, et al., Scalable Framework for 3D FFTs on the Blue Gene/L Supercomputer: Implementation and Early Performance Measurements, IBM J. Res. & Dev., 49(2-3): 457--464, 2005.
[15]
B. G. Fitch, A. Rayshubskiy, M. Eleftheriou, et al., Blue Matter: Strong Scaling of Molecular Dynamics on Blue Gene/L, IBM RC23888, February 22, 2006.
[16]
B. G. Fitch, A. Rayshubskiy, M. Eleftheriou, et al., Blue Matter: Approaching the Limits of Concurrency for Classical Molecular Dynamics, IBM RC23956, May 12, 2006.
[17]
B. G. Fitch, A. Rayshubskiy, M. Eleftheriou, et al., Blue Matter: Strong Scaling of Molecular Dynamics on Blue Gene/L, IBM RC23688, August 5, 2005.
[18]
M. Frigo and S. G. Johnson, The Design and Implementation of FFTW3, Proceedings of the IEEE, 93(2): 216--231, 2005.
[19]
R. S. Germain, B. Fitch, A. Rayshubskiy, et al., Blue Matter on Blue Gene/L: Massively Parallel Computation for Biomolecular Simulation, presented at 3rd IEEE/ACM/IFIP international conference on Hardware/software codesign and system synthesis (CODES+ISSS'05), New York, NY, 2005.
[20]
T. A. Halgren, MMFF VII. Characterization of MMFF94, MMFF94s, and Other Widely Available Force Fields for Conformational Energies and for Intermolecular-Interaction Energies and Geometries, J. Comput. Chem., 20(7): 730--748, 1999.
[21]
G. S. Heffelfinger, Parallel Atomistic Simulations, Comput. Phys. Commun., 128(1-2): 219--237, 2000.
[22]
W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives, Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids, J. Am. Chem. Soc., 118(45): 11225--11236, 1996.
[23]
P. A. Kollman, R. W. Dixon, W. D. Cornell, et al., "The Development/Application of a "Minimalist" Organic/Biomolecular Mechanic Forcefield Using a Combination of Ab Initio Calculations and Experimental Data," in Computer Simulation of Biomolecular Systems: Theoretical and Experimental Applications, W. F. van Gunsteren and P. K. Weiner, Eds. Dordrecht, Netherlands: ESCOM, 1997, 83--96.
[24]
S. Kumar, G. Almasi, C. Huang, et al., Achieving Strong Scaling with NAMD on Blue Gene/L, presented at IEEE International Parallel & Distributed Processing Symposium, Rhodes Island, Greece, 2006.
[25]
J. Liu, J. Wu, and D. K. Panda, High Performance RDMA-Based MPI Implementation over InfiniBand, presented at 17th International Conference on Supercomputing, San Francisco, CA, 2003.
[26]
J. MacKerell, A. D., D. Bashford, M. Bellott, et al., All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins, J. Phys. Chem. B, 102(18): 3586--3616, 1998.
[27]
P. Mark and L. Nilsson, Structure and Dynamics of Liquid Water with Different Long-Range Interaction Truncation and Temperature Control Methods in Molecular Dynamics Simulations, J. Comput. Chem., 23(13): 1211--1219, 2002.
[28]
Mellanox Technologies, Mellanox IB-Verbs API (VAPI): Mellanox Software Programmer's Interface for InfiniBand Verbs, 2001.
[29]
T. Narumi, A. Kawai, and T. Koishi, An 8.61 Tflop/s Molecular Dynamics Simulation for NaCl with a Special-Purpose Computer: MDM, presented at ACM/IEEE SC2001 Conference, Denver, Colorado, 2001.
[30]
J. Norberg and L. Nilsson, On the Truncation of Long-Range Electrostatic Interactions in DNA, Biophys. J., 79(3): 1537--1553, 2000.
[31]
V. S. Pande, I. Baker, J. Chapman, et al., Atomistic Protein Folding Simulations on the Submillisecond Time Scale Using Worldwide Distributed Computing, Biopolymers, 68(1): 91--109, 2003.
[32]
P. M. Papadopoulos, M. J. Katz, and G. Bruno, NPACI Rocks: Tools and Techniques for Easily Deploying Manageable Linux Clusters, Concurrency Comput. Pract. Ex., 15(7-8): 707--725, 2003.
[33]
M. Patra, M. Karttunen, T. Hyvönen, et al., Molecular Dynamics Simulations of Lipid Bilayers: Major Artifacts Due to Truncating Electrostatic Interactions, Biophys. J., 84: 3636--3645, 2003.
[34]
J. C. Phillips, R. Braun, W. Wang, et al., Scalable Molecular Dynamics with NAMD, J. Comput. Chem., 26(16): 1781--1802, 2005.
[35]
J. C. Phillips, G. Zheng, S. Kumar, et al., NAMD: Biomolecular Simulation on Thousands of Processors, presented at ACM/IEEE SC2002 Conference, Baltimore, 2002.
[36]
S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular-Dynamics, J. Comput. Phys., 117(1): 1--19, 1995.
[37]
S. Plimpton and B. Hendrickson, Parallel Molecular-Dynamics Simulations of Organic Materials, Int. J. Mod. Phys. C., 5(2): 295--298, 1994.
[38]
S. Plimpton and B. Hendrickson, A New Parallel Method for Molecular Dynamics Simulation of Macromolecular Systems, J. Comput. Chem., 17(3): 326--337, 1996.
[39]
W. R. P. Scott, P. H. Hünenberger, I. G. Tironi, et al., The GROMOS Biomolecular Simulation Program Package, J. Phys. Chem. A, 103(19): 3596--3607, 1999.
[40]
M. M. Seibert, A. Patriksson, B. Hess, et al., Reproducible Polypeptide Folding and Structure Prediction Using Molecular Dynamics Simulations, J. Mol. Biol., 354(1): 173--183, 2005.
[41]
Y. Shan, J. L. Klepeis, M. P. Eastwood, et al., Gaussian Split Ewald: A Fast Ewald Mesh Method for Molecular Simulation, J. Chem. Phys., 122: 054101, 2005.
[42]
T. Shanley, InfiniBand Network Architecture. Boston: Addison-Wesley, 2003.
[43]
D. E. Shaw, A Fast, Scalable Method for the Parallel Evaluation of Distance-Limited Pairwise Particle Interactions, J. Comput. Chem., 26(13): 1318--1328, 2005.
[44]
M. Snir, A Note on N-Body Computations with Cutoffs, Theor. Comput. Syst., 37: 295--318, 2004.
[45]
D. van der Spoel, E. Lindahl, B. Hess, et al., GROMACS: Fast, Flexible, and Free, Journal of Computational Chemistry, 26(16): 1701--1718, 2005.
[46]
M. Taiji, T. Narumi, Y. Ohno, et al., Protein Explorer: A Petaflops Special-Purpose Computer System for Molecular Dynamics Simulations, presented at ACM/IEEE SC2003 Conference, Phoenix, Arizona, 2003.
[47]
R. Zhou and B. J. Berne, A New Molecular Dynamics Method Combining the Reference System Propagator Algorithm with a Fast Multipole Method for Simulating Proteins and Other Complex Systems, J. Chem. Phys., 103(21): 9444--9459, 1995.
[48]
R. Zhou, E. Harder, H. Xu, et al., Efficient Multiple Time Step Method for Use with Ewald and Particle Mesh Ewald for Large Biomolecular Systems, J. Chem. Phys., 115(5): 2348--2358, 2001.

Cited By

View all
  • (2025)High-performance novel ZIF-67 and ZIF-67@MWNTs composite adsorbents for efficient removal of pharmaceutical contaminant from water: Exceptional capacity and excellent reusabilitySeparation and Purification Technology10.1016/j.seppur.2024.129645355(129645)Online publication date: Mar-2025
  • (2024)Novel sterol binding domains in bacteriaeLife10.7554/eLife.90696.312Online publication date: 8-Feb-2024
  • (2024)Novel sterol binding domains in bacteriaeLife10.7554/eLife.9069612Online publication date: 8-Feb-2024
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
SC '06: Proceedings of the 2006 ACM/IEEE conference on Supercomputing
November 2006
746 pages
ISBN:0769527000
DOI:10.1145/1188455
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 11 November 2006

Permissions

Request permissions for this article.

Check for updates

Qualifiers

  • Article

Conference

SC '06
Sponsor:

Acceptance Rates

SC '06 Paper Acceptance Rate 54 of 239 submissions, 23%;
Overall Acceptance Rate 1,516 of 6,373 submissions, 24%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)341
  • Downloads (Last 6 weeks)46
Reflects downloads up to 22 Sep 2024

Other Metrics

Citations

Cited By

View all
  • (2025)High-performance novel ZIF-67 and ZIF-67@MWNTs composite adsorbents for efficient removal of pharmaceutical contaminant from water: Exceptional capacity and excellent reusabilitySeparation and Purification Technology10.1016/j.seppur.2024.129645355(129645)Online publication date: Mar-2025
  • (2024)Novel sterol binding domains in bacteriaeLife10.7554/eLife.90696.312Online publication date: 8-Feb-2024
  • (2024)Novel sterol binding domains in bacteriaeLife10.7554/eLife.9069612Online publication date: 8-Feb-2024
  • (2024)Selective adsorption of indole on mesoporous carbon in an aqueous systemCarbon Reports10.7209/carbon.0303043:3(134-141)Online publication date: 1-Sep-2024
  • (2024)Sphingosine-1-Phosphate Receptor Modulator – Siponimod: An Evaluation to Ameliorate Aluminium Chloride Induced Behavioural Change and Biochemical effectsResearch Journal of Pharmacy and Technology10.52711/0974-360X.2024.00029(179-187)Online publication date: 19-Jan-2024
  • (2024)Computational toolbox for the analysis of protein–glycan interactionsBeilstein Journal of Organic Chemistry10.3762/bjoc.20.18020(2084-2107)Online publication date: 22-Aug-2024
  • (2024)Bioinformatics-Driven mRNA-Based Vaccine Design for Controlling Tinea Cruris Induced by Trichophyton rubrumPharmaceutics10.3390/pharmaceutics1608098316:8(983)Online publication date: 25-Jul-2024
  • (2024)A Dynamic and Effective Peptide-Based Strategy for Promptly Addressing Emerging SARS-CoV-2 Variants of ConcernPharmaceuticals10.3390/ph1707089117:7(891)Online publication date: 4-Jul-2024
  • (2024)Computational Exploration of Potential Pharmacological Inhibitors Targeting the Envelope Protein of the Kyasanur Forest Disease VirusPharmaceuticals10.3390/ph1707088417:7(884)Online publication date: 3-Jul-2024
  • (2024)Structure-Based In Silico Approaches Reveal IRESSA as a Multitargeted Breast Cancer Regulatory, Signalling, and Receptor Protein InhibitorPharmaceuticals10.3390/ph1702020817:2(208)Online publication date: 6-Feb-2024
  • Show More Cited By

View Options

Get Access

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media