Nothing Special   »   [go: up one dir, main page]

skip to main content
article

Block algorithms for reordering standard and generalized Schur forms

Published: 01 December 2006 Publication History

Abstract

Block algorithms for reordering a selected set of eigenvalues in a standard or generalized Schur form are proposed. Efficiency is achieved by delaying orthogonal transformations and (optionally) making use of level 3 BLAS operations. Numerical experiments demonstrate that existing algorithms, as currently implemented in LAPACK, are outperformed by up to a factor of four.

References

[1]
Anderson, E., Bai, Z., Bischof, C. H., Blackford, S., Demmel, J. W., Dongarra, J. J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., and Sorensen, D. C. 1999. LAPACK Users' Guide, 3rd ed. SIAM, Philadelphia, PA.
[2]
Bai, Z. and Demmel, J. W. 1993. On swapping diagonal blocks in real Schur form. Linear Algebra Appl. 186, 73--95.
[3]
Bai, Z. and Demmel, J. W. 1998. Using the matrix sign function to compute invariant subspaces. SIAM J. Matrix Anal. Appl. 19, 1, 205--225.
[4]
Bischof, C. H., Lang, B., and Sun, X. 2000. A framework for symmetric band reduction. ACM Trans. Math. Softw. 26, 4, 581--601.
[5]
Bojanczyk, A. and Van Dooren, P. 1993. Reordering diagonal blocks in the real Schur form. In Linear Algebra for Large Scale and Real-Time Applications, M. S. Moonen et al., Eds. Kluwer Academic, Dordrecht, the Netherlands, 351--352.
[6]
Braman, K., Byers, R., and Mathias, R. 2002a. The multishift QR algorithm. I. Maintaining well-focused shifts and level 3 performance. SIAM J. Matrix Anal. Appl. 23, 4, 929--947.
[7]
Braman, K., Byers, R., and Mathias, R. 2002b. The multishift QR algorithm. II. Aggressive early deflation. SIAM J. Matrix Anal. Appl. 23, 4, 948--973.
[8]
Byers, R., He, C., and Mehrmann, V. 1997. The matrix sign function method and the computation of invariant subspaces. SIAM J. Matrix Anal. Appl. 18, 3, 615--632.
[9]
Dackland, K. and Kågström, B. 1999. Blocked algorithms and software for reduction of a regular matrix pair to generalized Schur form. ACM Trans. Math. Softw. 25, 4, 425--454.
[10]
Dongarra, J. J., Du Croz, J., Duff, I. S., and Hammarling, S. 1990. A set of level 3 basic linear algebra subprograms. ACM Trans. Math. Softw. 16, 1--17.
[11]
Fokkema, D. R., Sleijpen, G. L. G., and van der Vorst, H. A. 1998. Jacobi-Davidson style QR and QZ algorithms for the reduction of matrix pencils. SIAM J. Sci. Comput. 20, 1, 94--125.
[12]
Golub, G. H. and Van Loan, C. F. 1996. Matrix Computations, 3rd ed. Johns Hopkins University Press, Baltimore, MD.
[13]
Kågström, B. 1993. A direct method for reordering eigenvalues in the generalized real Schur form of a regular matrix pair (A, B). In Linear Algebra for Large Scale and Real-Time Applications, M. S. Moonen et al., Eds. Kluwer Academic, Dordrecht, the Netherlands, 195--218.
[14]
Kåöm, B. and Kressner, D. 2005. Multishift variants of the QZ algorithm with aggressive early deflation. Tech. Rep. UMINF-05. 11, Department of Computing Science, Umeå University, Umeå, Sweden.
[15]
Kåöm, B. and Poromaa, P. 1996a. Computing eigenspaces with specified eigenvalues of a regular matrix pari (A, B) and condition estimation: Theory, algorithms and software. Numer. Algorithms 12, 3-4, 369--407
[16]
Kågström, B. and Poromaa, P. 1996b. LAPACK-Style algorithms and software for solving the generalized Sylvester equation and estimating the separation between regular matrix pairs. ACM Trans. Math. Softw. 22, 1, 78--103.
[17]
Kressner, D. 2004. Numerical methods and software for general and structured eigenvalue problems. Ph.D. thesis, TU Berlin, Institut für Mathematik, Berlin, Germany.
[18]
Lang, B. 1997. Effiziente Orthogonaltransformationen bei der Eigen- und Singulärwertzer- legung. Habilitationsschrift.
[19]
Murnaghan, F. D. and Wintner, A. 1931. A canonical form for real matrices under orthogonal transformations. Proc. Natl. Acad. Sci. USA 17, 417--420.
[20]
Sleijpen, G. L. G. and van der Vorst, H. A. 1996. A Jacobi-Davidson iteration method for linear eigenvalue problems. SIAM J. Matrix Anal. Appl. 17, 2, 401--425.
[21]
Stewart, G. W. 1976. Algorithm 407: HQR3 and EXCHNG: FORTRAN programs for calculating the eigenvalues of a real upper Hessenberg matrix in a prescribed order. ACM Trans. Math. Softw. 2, 275--280.
[22]
Stewart, G. W. 2002. A Krylov-Schur algorithm for large eigenproblems. SIAM J. Matrix Anal. Appl. 23, 3, 601--614.
[23]
Van Dooren, P. 1982. Algorithm 590: DSUBSP and EXCHQZ: Fortran subroutines for computing deflating subspaces with specified spectrum. ACM Trans. Math. Softw. 8, 376--382.
[24]
Whaley, R. C., Petitet, A., and Dongarra, J. J. 2001. Automated empirical optimization of software and the ATLAS project. Parallel Comput. 27, 1--2, 3--35.

Cited By

View all
  • (2023)Computation of the von Neumann entropy of large matrices via trace estimators and rational Krylov methodsNumerische Mathematik10.1007/s00211-023-01368-6155:3-4(377-414)Online publication date: 1-Dec-2023
  • (2022)Mixed Precision Recursive Block Diagonalization for Bivariate Functions of MatricesSIAM Journal on Matrix Analysis and Applications10.1137/21M140787243:2(638-660)Online publication date: 1-Jan-2022
  • (2020)Task‐based, GPU‐accelerated and robust library for solving dense nonsymmetric eigenvalue problemsConcurrency and Computation: Practice and Experience10.1002/cpe.591533:11Online publication date: 6-Aug-2020
  • Show More Cited By

Index Terms

  1. Block algorithms for reordering standard and generalized Schur forms

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Mathematical Software
    ACM Transactions on Mathematical Software  Volume 32, Issue 4
    December 2006
    145 pages
    ISSN:0098-3500
    EISSN:1557-7295
    DOI:10.1145/1186785
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 01 December 2006
    Published in TOMS Volume 32, Issue 4

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Schur form
    2. deflating subspace
    3. invariant subspace
    4. reordering

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)41
    • Downloads (Last 6 weeks)4
    Reflects downloads up to 24 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2023)Computation of the von Neumann entropy of large matrices via trace estimators and rational Krylov methodsNumerische Mathematik10.1007/s00211-023-01368-6155:3-4(377-414)Online publication date: 1-Dec-2023
    • (2022)Mixed Precision Recursive Block Diagonalization for Bivariate Functions of MatricesSIAM Journal on Matrix Analysis and Applications10.1137/21M140787243:2(638-660)Online publication date: 1-Jan-2022
    • (2020)Task‐based, GPU‐accelerated and robust library for solving dense nonsymmetric eigenvalue problemsConcurrency and Computation: Practice and Experience10.1002/cpe.591533:11Online publication date: 6-Aug-2020
    • (2018)Efficient Evaluation of Matrix PolynomialsParallel Processing and Applied Mathematics10.1007/978-3-319-78024-5_3(24-35)Online publication date: 23-Mar-2018
    • (2018)A Task-Based Algorithm for Reordering the Eigenvalues of a Matrix in Real Schur FormParallel Processing and Applied Mathematics10.1007/978-3-319-78024-5_19(207-216)Online publication date: 23-Mar-2018
    • (2017)High‐performance direct algorithms for computing the sign function of triangular matricesNumerical Linear Algebra with Applications10.1002/nla.213925:2Online publication date: 19-Dec-2017
    • (2015)Generalized Rational Krylov Decompositions with an Application to Rational ApproximationSIAM Journal on Matrix Analysis and Applications10.1137/14099808136:2(894-916)Online publication date: Jan-2015
    • (2014)A parallel implementation of Davidson methods for large-scale eigenvalue problems in SLEPcACM Transactions on Mathematical Software10.1145/254369640:2(1-29)Online publication date: 5-Mar-2014
    • (2010)A Novel Parallel QR Algorithm for Hybrid Distributed Memory HPC SystemsSIAM Journal on Scientific Computing10.1137/09075693432:4(2345-2378)Online publication date: 1-Aug-2010
    • (2009)Parallel eigenvalue reordering in real Schur formsConcurrency and Computation: Practice and Experience10.1002/cpe.138621:9(1225-1250)Online publication date: 11-Feb-2009
    • Show More Cited By

    View Options

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media