Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/1007352.1007423acmconferencesArticle/Chapter ViewAbstractPublication PagesstocConference Proceedingsconference-collections
Article

A new family of Cayley expanders (?)

Published: 13 June 2004 Publication History

Abstract

We assume that for some fixed large enough integer d, the symmetric group Sd can be generated as an expander using d1/30 generators. Under this assumption, we explicitly construct an infinite family of groups Gn, and explicit sets of generators Yn ⊂ Gn, such that all generating sets have bounded size (at most d1/7), and the associated Cayley graphs are all expanders. The groups Gn above are very simple, and completely different from previous known examples of expanding groups. Indeed, Gn is (essentially) all symmetries of the d-regular tree of depth n. The proof is completely elementary, using only simple combinatorics and linear algebra. The recursive structure of the groups Gn (iterated wreath products of the alternating group Ad) allows for an inductive proof of expansion, using the group theoretic analogue [4] of the zig-zag graph product of [38]. The explicit construction of the generating sets Yn uses an efficient algorithm for solving certain equations over these groups, which relies on the work of [33] on the commutator width of perfect groups.We stress that our assumption above on weak expansion in the symmetric group is an open problem. We conjecture that it holds for all d. We discuss known results related to its likelihood in the paper.

References

[1]
M. Ajtai, J. Komlós, and E. Szemerédi. Sorting in c, log, n parallel steps. Combinatorica, 3(1):1--19, 1983.
[2]
N. Alon. Eigenvalues and expanders. Combinatorica, 6(2):83--96, 1986.
[3]
N. Alon, Z. Galil, and V. D. Milman. Better expanders and superconcentrators. Journal of Algorithms, 8(3):337--347, 1987.
[4]
N. Alon, A. Lubotzky, and A. Wigderson. Semi-direct product in groups and zig-zag product in graphs: connections and applications (extended abstract). In 42nd IEEE Symposium on Foundations of Computer Science (Las Vegas, NV, 2001), pages 630--637. IEEE Computer Soc., Los Alamitos, CA, 2001.
[5]
N. Alon and V. D. Milman. λ1, isoperimetric inequalities for graphs, and superconcentrators. Journal of Combinatorial Theory. Series B, 38(1):73--88, 1985.
[6]
N. Alon and Y. Roichman. Random Cayley graphs and expanders. Random Structures Algorithms, 5(2):271--284, 1994.
[7]
L. Babai, G. Hetyei, W. M. Kantor, A. Lubotzky, and A. Seress. On the diameter of finite groups. In 31st Annual Symposium on Foundations of Computer Science, Vol. I, II (St. Louis, MO, 1990), pages 857--865. IEEE Comput. Soc. Press, Los Alamitos, CA, 1990.
[8]
E. Ben-Sasson, M. Sudan, S. Vadhan, and A. Wigderson. Randomness-efficient low degree tests and short pcps via epsilon-biased sets. In Proceedings of the thirty-fifth ACM symposium on Theory of computing, pages 612--621. ACM Press, 2003.
[9]
M. Capalbo, O. Reingold, S. Vadhan, and A. Wigderson. Randomness conductors and constant-degree lossless expanders. In Proceedings of the thiry-fourth annual ACM symposium on Theory of computing, pages 659--668. ACM Press, 2002.
[10]
P. Diaconis and M. Shahshahani. On the eigenvalues of random matrices. J. Appl. Probab., 31A:49--62, 1994. Studies in applied probability.
[11]
J. D. Dixon. The probability of generating the symmetric group. Math. Z., 110:199--205, 1969.
[12]
M. Eichler. Quaternäre quadratische Formen und die Riemannsche Vermutung für die Kongruenzzetafunktion. Arch. Math., 5:355--366, 1954.
[13]
O. Gabber and Z. Galil. Explicit constructions of linear-sized superconcentrators. J. Comput. Syst. Sci., 22(3):407--420, June 1981.
[14]
O. Goldreich, R. Impagliazzo, L. Levin, R. Venkatesan, and D. Zuckerman. Security preserving amplification of hardness. In 31st Annual Symposium on Foundations of Computer Science, volume I, pages 318--326, St. Louis, Missouri, 22--24 Oct. 1990. IEEE.
[15]
M. Gromov. Spaces and questions. Geometric and Functional Analysis, pages 118--161, 2000. Part I of Special Volume on GAFA 2000 (Tel Aviv, 1999).
[16]
R. Impagliazzo, N. Nisan, and A. Wigderson. Pseudorandomness for network algorithms. In Proceedings of the Twenty-Sixth Annual ACM Symposium on the Theory of Computing, pages 356--364, Montréal, Québec, Canada, 23--25 May 1994.
[17]
R. Impagliazzo and A. Wigderson. P = BPP if E requires exponential circuits: Derandomizing the XOR lemma. In Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing, pages 220--229, El Paso, Texas, 4--6 May 1997.
[18]
S. Jimbo and A. Maruoka. Expanders obtained from affine transformations. Combinatorica, 7(4):343--355, 1987.
[19]
N. J. Kalton and J. W. Roberts. Uniformly exhaustive submeasures and nearly additive set functions. Transactions of the American Mathematical Society, 278(2):803--816, 1983.
[20]
D. Kazhdan. On the connection of the dual space of a group with the structure of its closed subgroups (russian). Funkcional. Anal. i Prilozh., 1:71--74, 1967.
[21]
M. Klawe. Limitations on explicit constructions of expanding graphs. SIAM J. Comput., 13(1):156--166, 1984.
[22]
M. W. Liebeck and A. Shalev. The probability of generating a finite simple group. Geom. Dedicata, 56(1):103--113, 1995.
[23]
L. Lovasz and P. Winkler. Mixing times. In Microsurveys in discrete probability (Princeton, NJ, 1997), volume 41 of DIMACS Ser. Discrete Math. Theoret. Comput. Sci., pages 85--133. Amer. Math. Soc., Providence, RI, 1998.
[24]
A. Lubotzky. Discrete groups, expanding graphs and invariant measures. Birkhauser Verlag, Basel, 1994.
[25]
A. Lubotzky and I. Pak. The product replacement algorithm and Kazhdan's property (T). Journal of the American Mathematical Society, 14(2):347--363 (electronic), 2001.
[26]
A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan graphs. Combinatorica, 8(3):261--277, 1988.
[27]
A. Lubotzky and B. Weiss. Groups and expanders. In Expanding graphs (Princeton, NJ, 1992), volume 10 of DIMACS Ser. Discrete Math. Theoret. Comput. Sci., pages 95--109. Amer. Math. Soc., Providence, RI, 1993.
[28]
G. A. Margulis. Explicit constructions of expanders. Problemy Peredav ci Informacii, 9(4):71--80, 1973.
[29]
G. A. Margulis. Explicit group-theoretic constructions of combinatorial schemes and their applications in the construction of expanders and concentrators. Problemy Peredachi Informatsii, 24(1):51--60, 1988.
[30]
R. Meshulam and A. Wigderson. Expanders from symmetric codes. In Proceedings of the thiry-fourth annual ACM symposium on Theory of computing, pages 669--677. ACM Press, 2002.
[31]
M. Morgenstern. Existence and explicit constructions of q+1 regular Ramanujan graphs for every prime power $q$. Journal of Combinatorial Theory. Series B, 62(1):44--62, 1994.
[32]
J. Naor and M. Naor. Small-bias probability spaces: Efficient constructions and applications. SIAM J. Comput., 22(4):838--856, Aug. 1993.
[33]
N. Nikolov. On the commutator width of perferct groups. to appear.
[34]
O. Ore. Some remarks on commutators. Proc. Amer. Math. Soc., 2:307--314, 1951.
[35]
M. S. Pinsker. On the complexity of a concentrator. In 7th Annual Teletraffic Conference, pages 318/1--318/4, Stockholm, 1973.
[36]
N. Pippenger. Sorting and selecting in rounds. SIAM J. Comput., 16(6):1032--1038, Dec. 1987.
[37]
N. Pippenger and A. C. Yao. Rearrangeable networks with limited depth. SIAM Journal on Algebraic and Discrete Methods, 3:411--417, 1982.
[38]
O. Reingold, S. Vadhan, and A. Wigderson. Entropy waves, the zig-zag graph product, and new constant-degree expanders. Ann. of Math. (2), 155(1):157--187, 2002.
[39]
A. Selberg. On the estimation of Fourier coefficients of modular forms. In Proc. Sympos. Pure Math., Vol. VIII, pages 1--15. Amer. Math. Soc., Providence, R. I., 1965.
[40]
M. Sipser. Expanders, randomness, or time versus space. J. Comput. Syst. Sci., 36(3):379--383, June 1988.
[41]
M. Sipser and D. A. Spielman. Expander codes. IEEE Transactions on Information Theory, 42(6, part 1):1710--1722, 1996.
[42]
D. A. Spielman. Linear-time encodable and decodable error-correcting codes. IEEE Transactions on Information Theory, 42(6, part 1):1723--1731, 1996.
[43]
M. R. Tanner. Explicit concentrators from generalized n-gons. SIAM Journal on Algebraic Discrete Methods, 5(3):287--293, 1984.
[44]
A. Urquhart. Hard examples for resolution. Journal of the Association for Computing Machinery, 34(1):209--219, 1987.
[45]
L. G. Valiant. Graph-theoretic arguments in low-level complexity. In Mathematical foundations of computer science (Proc. Sixth Sympos., Tatranska Lomnica, 1977), pages 162--176. Lecture Notes in Comput. Sci., Vol. 53. Springer, Berlin, 1977.
[46]
A. Wigderson and D. Zuckerman. Expanders that beat the eigenvalue bound: explicit construction and applications. Combinatorica, 19(1):125--138, 1999.

Cited By

View all

Index Terms

  1. A new family of Cayley expanders (?)

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    STOC '04: Proceedings of the thirty-sixth annual ACM symposium on Theory of computing
    June 2004
    660 pages
    ISBN:1581138520
    DOI:10.1145/1007352
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 13 June 2004

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Cayley graphs
    2. expanders
    3. zig-zag product

    Qualifiers

    • Article

    Conference

    STOC04
    Sponsor:
    STOC04: Symposium of Theory of Computing 2004
    June 13 - 16, 2004
    IL, Chicago, USA

    Acceptance Rates

    Overall Acceptance Rate 1,469 of 4,586 submissions, 32%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)1
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 29 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media