Nothing Special   »   [go: up one dir, main page]

skip to main content
article

Nanowire-based programmable architectures

Published: 01 July 2005 Publication History

Abstract

Chemists can now construct wires which are just a few atoms in diameter; these wires can be selectively field-effect gated, and wire crossings can act as diodes with programmable resistance. These new capabilities present both opportunities and challenges for constructing nanoscale computing systems. The tiny feature sizes offer a path to economically scale down to atomic dimensions. However, the associated bottom-up synthesis techniques only produce highly regular structures and come with high defect rates and minimal control during assembly. To exploit these technologies, we develop nanowire-based architectures which can bridge between lithographic and atomic-scale feature sizes and tolerate defective and stochastic assembly of regular arrays to deliver high density universal computing devices. Using 10nm pitch nanowires, these nanowire-based programmable architectures offer one to two orders of magnitude greater mapped-logic density than defect-free lithographic FPGAs at 22nm.

References

[1]
Austin, M. D., Ge, H., Wu, W., Li, M., Yu, Z., Wasserman, D., Lyon, S. A., and Chou, S. Y. 2004. Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography. Applied Physics Letters 84, 26 (June), 5299--5301.
[2]
Betz, V. 1999. VPR and T-VPack: Versatile packing, placement and routing for FPGAs. Version 4.3. Available at http://www.eecg.toronto.edu/vaughn/vpr/vpr.html.
[3]
Betz, V. and Rose, J. 1997. VPR: A new packing, placement, and routing tool for FPGA research. In Proceedings of the International Conference on Field-Programmable Logic and Applications, W. Luk, P. Y. K. Cheung, and M. Glesner, Eds. Lecture Notes in Computer Science, vol. 1304. Springer, 213--222.
[4]
Betz, V. and Rose, J. 1999a. FPGA routing architecture: Segmentation and buffering to optimize speed and density. In Proceedings of the International Symposium on Field-Programmable Gate Arrays. 59--68.
[5]
Betz, V. and Rose, J. 1999b. FPGA place-and-route challenge. Available at http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html.
[6]
Betz, V., Rose, J., and Marquardt, A. 1999. Architecture and CAD for Deep-Submicron FPGAs. Kluwer Academic Publishers, Norwell, MA.
[7]
Björk, M. T., Ohlsson, B. J., Sass, T., Persson, A. I., Thelander, C., Magnusson, M. H., Depper, K., Wallenberg, L. R., and Samuelson, L. 2002. One-dimensional steeplechase for electrons realized. Nano Letters 2, 2 (Feb.), 87--89.
[8]
Brault, J., Saitoh, M., and Hiramoto, T. 2005. Channel width and length dependence si nanocrystal memories with ultra-nanoscale channel. IEEE Trans. Nanotech. 4, 3, 349--354.
[9]
Brown, C. L., Jonas, U., Preece, J. A., Ringsdorf, H., Seitz, M., and Stoddart, J. F. 2000. Introduction of {2}catenanes into langmuir films and langmuir-blodgett multilayers. A possible strategy for molecular information storage materials. Langmuir 16, 4, 1924--1930.
[10]
Brown, S., Khellah, M., and Vranesic, Z. 1996. Minimizing fpga interconnect delays. IEEE Des. Test Comput. 13, 4, 16--23.
[11]
Brueck, S. R. J. 2002. International Trends in Applied Optics. SPIE Press, Bellingham, WA, Chapter 5, 85--109.
[12]
Chen, D., Cong, J., Ercegovac, M., and Huang, Z. 2003. Performance-driven mapping for cpld architectures. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 22, 10 (Oct.), 1424--1431.
[13]
Chen, Y., Jung, G.-Y., Ohlberg, D. A. A., Li, X., Stewart, D. R., Jeppesen, J. O., Nielsen, K. A., Stoddart, J. F., and Williams, R. S. 2003. Nanoscale molecular-switch crossbar circuits. Nanotech. 14, 462--468.
[14]
Chen, Y., Ohlberg, D. A. A., Li, X., Stewart, D. R., Williams, R. S., Jeppesen, J. O., Nielsen, K. A., Stoddart, J. F., Olynick, D. L., and Anderson, E. 2003. Nanoscale molecular-switch devices fabricated by imprint lithography. Applied Physics Letters 82, 10, 1610--1612.
[15]
Chen, Y., Ohlberg, D. A. A., Medeiros-Ribeiro, G., Chang, Y. A., and Williams, R. S. 2000. Self-assembled growth of epitaxial erbium disilicide nanowires on silicon. Applied Physics Letters 76, 26, 4004--4006.
[16]
Collier, C., Mattersteig, G., Wong, E., Luo, Y., Beverly, K., Sampaio, J., Raymo, F., Stoddart, J., and Heath, J. 2000. A {2}catenane-based solid state reconfigurable switch. Science 289, 1172--1175.
[17]
Cong, J., Chen, D., Ding, E., Huang, Z., Hwang, Y.-Y., Peck, J., Wu, C., and Xu, S. 2004. RASP_SYN release B 2.1: FPGA/CPLD technology mapping and synthesis package. Available at http://ballade.cs.ucla.edu/software_release/rasp/htdocs/.
[18]
Cui, Y., Duan, X., Hu, J., and Lieber, C. M. 2000. Doping and electrical transport in silicon nanowires. J. Phys. Chem. B 104, 22 (June), 5213--5216.
[19]
Cui, Y., Lauhon, L. J., Gudiksen, M. S., Wang, J., and Lieber, C. M. 2001. Diameter-controlled synthesis of single crystal silicon nanowires. Applied Physics Letters 78, 15, 2214--2216.
[20]
Cui, Y., Zhong, Z., Wang, D., Wang, W. U., and Lieber, C. M. 2003. High performance silicon nanowire field effect transistors. Nanoletters 3, 2, 149--152.
[21]
DeHon, A. 1996. Reconfigurable architectures for general-purpose computing. AI Tech. rep. 1586 (oct.)., MIT Artificial Intelligence Laboratory, Cambridge, MA.
[22]
DeHon A. 2003. Array-based architecture for FET-based, nanoscale electronics. IEEE Trans. Nanotech. 2, 1 (March) 23--32.
[23]
DeHon, A. 2004. Law of large numbers system design. In Nano, Quantum and Molecular Computing: Implications to High Level Design and Validation, S. K. Shukla and R. I. Bahar, Eds. Kluwer Academic Publishers, Boston, MA. Chapter 7, 213--241.
[24]
DeHon, A. 2005. Design of programmable interconnect for sublithographic programmable logic arrays. In Proceedings of the International Symposium on Field-Programmable Gate Arrays. 127--137.
[25]
DeHon, A., Goldstein, S. C., Kuekes, P. J., and Lincoln, P. 2005. Non-photolithographic nanoscale memory density prospects. IEEE Trans. Nanotech. 4, 2, 215--228.
[26]
DeHon, A., Lincoln, P., and Savage, J. 2003. Stochastic assembly of sublithographic nanoscale interfaces. IEEE Trans. Nanotech. 2, 3, 165--174.
[27]
DeHon, A. and Naeimi, H. 2005. Seven strategies for tolerating highly defective fabrication. IEEE Design Test Comput. 22, 4 (July--August), 306--315.
[28]
DeHon, A. and Wilson, M. J. 2004. Nanowire-based sublithographic programmable logic arrays. In Proceedings of the International Symposium on Field-Programmable Gate Arrays. 123--132.
[29]
Fan, Z., Mo, X., Lou, C., Yao, Y., Wang, D., Chen, G., and Lu, J. G. 2005. Structures and electrical properties for ag-tetracyanoquinodimetheane organometallic nanowires. IEEE Trans. Nanotech. 4, 2 (March), 238--241.
[30]
Gojman, B., Rachlin, E., and Savage, J. E. 2004. Decoding of stochastically assembled nanoarrays. In Proceedings of the International Symposium on VLSI.
[31]
Goldstein, S. C. and Budiu, M. 2001. NanoFabrics: Spatial computing using molecular electronics. In Proceedings of the International Symposium on Computer Architecture. 178--189.
[32]
Goldstein, S. C. and Rosewater, D. 2002. Digital logic using molecular electronics. In IEEE ISSCC Digest of Tech. Papers. 204--205.
[33]
Gudiksen, M. S., Lauhon, L. J., Wang, J., Smith, D. C., and Lieber, C. M. 2002. Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 415, 617--620.
[34]
Gudiksen, M. S., Wang, J., and Lieber, C. M. 2001. Synthetic control of the diameter and length of semiconductor nanowires. J. Phys. Chem. B 105, 4062--4064.
[35]
Heath, J. R., Kuekes, P. J., Snider, G. S., and Williams, R. S. 1998. A defect-tolerant computer architecture: Opportunities for nanotechnology. Science 280, 5370 (June), 1716--1721.
[36]
Hoover, H. J., Klawe, M. M., and Pippenger, N. J. 1984. Bounding fan-out in logical networks. J. ACM 31, 1 (Jan.), 13--18.
[37]
Huang, Y., Duan, X., Cui, Y., Lauhon, L., Kim, K., and Lieber, C. M. 2001. Logic gates and computation from assembled nanowire building blocks. Science 294, 1313--1317.
[38]
Huang, Y., Duan, X., Wei, Q., and Lieber, C. M. 2001. Directed assembly of one-dimensional nanostructures into functional networks. Science 291, 630--633.
[39]
ITRS. 2001. International technology roadmap for semiconductors. http://public.itrs.net/Files/2001ITRS/.
[40]
Kovtyukhova, N. I., Mallouk, T. E., and Mayer, T. E. 2003. Templated surface sol-gel synthesis of sio2 nanotubes and sio2-insulated metal nanowires. Advanced Materials 15, 780--785.
[41]
Krupke, R., Hennrich, F., v. Löhneysen, H., and Kappes, M. M. 2003. Separation of metallic from semiconducting single-walled carbon nanotubes. Science 301, 344--347.
[42]
Lauhon, L. J., Gudiksen, M. S., Wang, D., and Lieber, C. M. 2002. Epitaxial core-shell and core-multi-shell nanowire heterostructures. Nature 420, 57--61.
[43]
Law, M., Goldberger, J., and Yang, P. 2004. Semiconductor nanowires and nanotubes. Ann. Rev. Material Sci. 34, 83--122.
[44]
Lemieux, G., Lee, E., Tom, M., and Yu, A. 2004. Directional and single-driver wires in fpga interconnect. In Proceedings of the International Conference on Field-Programmable Technology. 41--48.
[45]
Luo, Y., Collier, P., Jeppesen, J. O., Nielsen, K. A., Delonno, E., Ho, G., Perkins, J., Tseng, H.-R., Yamamoto, T., Stoddart, J. F., and Heath, J. R. 2002. Two-dimensional molecular electronics circuits. ChemPhysChem 3, 6, 519--525.
[46]
Maunsell, F. G. 1937. A problem in cartophily. The Math. Gazette 22, 328--331.
[47]
McMurchie, L. and Ebling, C. 1995. PathFinder: A negotiation-based performance-driven router for FPGAs. In Proceedings of the ACM International Symposium on Field-Programmable Gate Arrays. 111--117.
[48]
Mead, C. and Conway, L. 1980. Introduction to VLSI Systems. Addison-Wesley.
[49]
Melosh, N. A., Boukai, A., Diana, F., Gerardot, B., Badolato, A., Petroff, P. M., and Heath, J. R. 2003. Ultrahigh-density nanowire lattices and circuits. Science 300, 112--115.
[50]
Morales, A. M. and Lieber, C. M. 1998. A laser ablation method for synthesis of crystalline semiconductor nanowires. Science 279, 208--211.
[51]
Naeimi, H. and DeHon, A. 2004. A greedy algorithm for tolerating defective crosspoints in NanoPLA design. In Proceedings of the IEEE International Conference on Field-Programmable Technology. 49--56.
[52]
Rueckes, T., Kim, K., Joselevich, E., Tseng, G. Y., Cheung, C.-L., and Lieber, C. M. 2000. Carbon nanotube based nonvolatile random access memory for molecular computing. Science 289, 94--97.
[53]
Sentovich, E. M., Singh, K. J., Lavagno, L., Moon, C., Murgai, R., Saldanha, A., Savoj, H., Stephan, P. R., Brayton, R. K., and Sangiovanni-Vincentelli, A. 1992. Sis: A system for sequential circuit synthesis. UCB/ERL M92/41 (May) University of California, Berkeley, CA.
[54]
Snider, G., Kuekes, P., and Williams, R. S. 2004. Cmos-like logic in defective, nanoscale crossbars. Nanotech. 15, 881--891.
[55]
Stewart, D. R., Ohlberg, D. A. A., Beck, P. A., Chen, Y., Williams, R. S., Jeppesen, J. O., Nielsen, K. A., and Stoddart, J. F. 2004. Molecule-independent electrical switching in pt/organic monolayer/ti devices. Nanoletters 4, 1, 133--136.
[56]
Strukov, D. B. and Likharev, K. K. 2005. Cmol fpga: a reconfigurable architecture for hybrid digital circuits with two-terminal nanodevices. Nanotech. 16, 6 (June), 888--900.
[57]
Tan, Y., Dai, X., Li, Y., and Zhu, D. 2003. Preparation of gold, platinum, palladium and silver nanoparticles by the reduction of their salts with a weak reductant--potassium bitartrate. J. Material Chem. 13, 1069--1075.
[58]
Tour, J. M., Cheng, L., Nackashi, D. P., Yao, Y., Flatt, A. K., Angelo, S. K. S., Mallouk, T. E., and Franzon, P. D. 2003. Nanocell electronic memories. J. Amer. Chem. Soc. 125, 43, 13279--13283.
[59]
Tsu, W., Macy, K., Joshi, A., Huang, R., Walker, N., Tung, T., Rowhani, O., George, V., Wawrzynek, J., and DeHon, A. 1999. HSRA: High-speed, hierarchical synchronous reconfigurable array. In Proceedings of the International Symposium on Field-Programmable Gate Arrays. 125--134.
[60]
Weste, N. H. E. and Harris, D. 2005. CMOS VLSI Design: A Circuits and Systems Perspective, 3rd ED. Addison-Wesley.
[61]
Whang, D., Jin, S., and Lieber, C. M. 2003a. Nanolithography using hierarchically assembled nanowire masks. Nanoletters 3, 7 (July), 951--954.
[62]
Whang, D., Jin, S., Wu, Y., and Lieber, C. M. 2003b. Large-scale hierarchical organization of nanowire arrays for integrated nanosystems. Nanoletters 3, 9 (Sept.), 1255--1259.
[63]
Williams, S. and Kuekes, P. 2001. Demultiplexer for a molecular wire crossbar network. United States Patent Number 6,256,767.
[64]
Wu, W., Jung, G.-Y., Olynick, D., Straznicky, J., Li, Z., Li, X., Ohlberg, D., Chen, Y., S.-Y.Wang, Liddle, J., Tong, W., and Williams, R. S. 2005. One-kilobit cross-bar molecular memory circuits at 30-nm half-pitch fabricated by nanoimprint lithography. Applied Physics A 80, 1173--1178.
[65]
Wu, Y., Fan, R., and Yang, P. 2002. Block-by-block growth of single-crystalline si/sige superlattice nanowires. Nano Letters 2, 2 (Feb.), 83--86.
[66]
Wu, Y., Xiang, J., Yang, C., Lu, W., and Lieber, C. M. 2004. Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures. Nature 430, 61--64.
[67]
Wu, Y. and Yang, P. 2000. Germanium Nanowire Growth via Simple Vapor Transport. Chem. Materials 12, 605--607.
[68]
Zheng, B., Wu, Y., Yang, P., and Liu, J. 2002. Synthesis of ultra-long and highly-oriented silicon oxide nanowires from alloy liquid. Advanced Materials 14, 122.

Cited By

View all
  • (2024)READ-Based In-Memory Computing Using Sentential Decision DiagramsProceedings of the 29th Asia and South Pacific Design Automation Conference10.1109/ASP-DAC58780.2024.10473963(818-823)Online publication date: 22-Jan-2024
  • (2023)An Accelerated Variable Stage Size Carry Skip Adder Realization Using 1S1R Resistive MemoryInternational Journal of Information Technology & Decision Making10.1142/S021962202350041423:03(1335-1365)Online publication date: 23-May-2023
  • (2023)STREAM: Toward READ-Based In-Memory Computing for Streaming-Based Processing for Data-Intensive ApplicationsIEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems10.1109/TCAD.2023.326372342:11(3854-3867)Online publication date: 1-Nov-2023
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Journal on Emerging Technologies in Computing Systems
ACM Journal on Emerging Technologies in Computing Systems  Volume 1, Issue 2
July 2005
90 pages
ISSN:1550-4832
EISSN:1550-4840
DOI:10.1145/1084748
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Journal Family

Publication History

Published: 01 July 2005
Published in JETC Volume 1, Issue 2

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Defect tolerance
  2. Manhattan mesh
  3. nanowires
  4. programmable interconnect
  5. programmable logic arrays
  6. stochastic construction
  7. sublithographic architecture

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)22
  • Downloads (Last 6 weeks)4
Reflects downloads up to 20 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)READ-Based In-Memory Computing Using Sentential Decision DiagramsProceedings of the 29th Asia and South Pacific Design Automation Conference10.1109/ASP-DAC58780.2024.10473963(818-823)Online publication date: 22-Jan-2024
  • (2023)An Accelerated Variable Stage Size Carry Skip Adder Realization Using 1S1R Resistive MemoryInternational Journal of Information Technology & Decision Making10.1142/S021962202350041423:03(1335-1365)Online publication date: 23-May-2023
  • (2023)STREAM: Toward READ-Based In-Memory Computing for Streaming-Based Processing for Data-Intensive ApplicationsIEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems10.1109/TCAD.2023.326372342:11(3854-3867)Online publication date: 1-Nov-2023
  • (2022)Hybrid Digital-Digital In-Memory Computing2022 Design, Automation & Test in Europe Conference & Exhibition (DATE)10.23919/DATE54114.2022.9774722(1177-1180)Online publication date: 14-Mar-2022
  • (2022)STREAM: Towards READ-Based In-Memory Computing for Streaming Based Data ProcessingProceedings of the 27th Asia and South Pacific Design Automation Conference10.1109/ASP-DAC52403.2022.9712569(690-695)Online publication date: 17-Jan-2022
  • (2021)All-Passive Hardware Implementation of Multilayer Perceptron ClassifiersIEEE Transactions on Neural Networks and Learning Systems10.1109/TNNLS.2020.301690132:9(4086-4095)Online publication date: Sep-2021
  • (2021)Hybrid Analog-Digital In-Memory Computing2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD)10.1109/ICCAD51958.2021.9643526(1-9)Online publication date: 1-Nov-2021
  • (2021)Defect-Tolerant Mapping of CMOL Circuit Targeting Delay OptimizationJournal of Computer Science and Technology10.1007/s11390-021-0904-036:5(1118-1132)Online publication date: 1-Oct-2021
  • (2021)DNA-Guided Self-assembly of Carbon Nanotube ElectronicsComputational Materials, Chemistry, and Biochemistry: From Bold Initiatives to the Last Mile10.1007/978-3-030-18778-1_21(481-501)Online publication date: 26-Jan-2021
  • (2020)Nano-Crossbar based Computing: Lessons Learned and Future Directions2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)10.23919/DATE48585.2020.9116566(382-387)Online publication date: Mar-2020
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media