Abstract
We establish existence conditions for extremal probability measures, study their properties, and consider applications of such measures for solving the perfect hedging problem for American options on incomplete “frictionless” markets with finite horizon. We develop an algorithm for computing an American option and solve a corresponding new example with this algorithm.
Similar content being viewed by others
References
Shiryaev, A.N., Osnovy stokhasticheskoi finansovoi matematiki, tom 2: Teoriya (Fundamentals of Stochastic Financial Mathematics, Vol. 2: Theory), Moscow: FAZIS, 1998.
Föllmer, H. and Schied, A., Stochastic Finance: An Introduction in Discrete Time, Berlin: de Gruyter, 2011. Translated under the title Vvedenie v stokhasticheskie finansy. Diskretnoe vremya, Moscow: MTsNMO, 2008.
Khametov, V.M. and Shelemekh, E.A., Superhedging of American Options on an Incomplete Market with Discrete Time and Finite Horizon, Autom. Remote Control, 2015, Vol. 76, No. 9, pp. 1616–1634.
Biagini, S. and Frittelli, M., A Unified Framework for Utility Maximization Problems: An Orlicz Space Approach, Ann. Appl. Probab., 2008, Vol. 18/3, pp. 929–966
Rokhlin, D.B., Equivalent Supermartingale Densities and Measures in Discrete Time Infinite Horizon Market Models, Theor. Prob. App., 2009, Vol. 53, No. 4, pp. 626–647
Khasanov, R.V., Maximizing Utility with Random Deposit and Hedging Payment Obligations, Cand. Sci. Dissertation, Moscow: Moscow State Univ., 2012.
Shiryaev, A.N., Veroyatnost’-2, (Probability-2), Moscow: Mosk. Tsentr Nepreryvn.Mat. Obrazov., 2004.
Billingsley, P., Convergence of Probability Measures, New York: Wiley, 1968. Translated under the title Skhodimost’ veroyatnostnykh mer, Moscow: Nauka, 1977.
Vasil’ev, G.A., Khametov, V.M., and Shelemekh, E.A., Conditions for the Discreteness of Extremal Probability Measures (the Finite-Dimensional Case), Math. Notes, 2013, Vol. 94, No. 6, pp. 963–967
Shiryaev, A.N., Veroyatnost’-1 (Probability-1), Moscow: Mosk. Tsentr Nepreryvn. Mat. Obrazov., 2004.
Zverev, O.V. and Khametov, V.M., Minimax Hedging of European Type Options on Incomplete Markets (Discrete Time). II, Obozr. Prikl. Prom. Mat., 2011, Vol. 18, No. 2, pp. 193–204
Kantorovich, L.V. and Akilov, G.P., Funktsional’nyi analiz (Functional Analysis), Moscow: Nauka, 1984.
Elliott, R.J., Stochastic Calculus and Applications, Berlin: Springer, 1982. Translated under the title Stokhasticheskii analiz i ego prilozheniya, Moscow: Mir, 1986.
Shilov, G.E. and Gurevich, B.L., Integral, mera i proizvodnaya (obshchaya teoriya) (Integral, Measure, and Derivative: General Theory), Moscow: Nauka, 1967.
Rockafellar, R.T., Convex Analysis, Princeton: Princeton Univ. Press, 1970. Translated under the title Vypuklyi analiz, Moscow: Mir, 1973.
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © V.M. Khametov, E.A. Shelemekh, 2016, published in Avtomatika i Telemekhanika, 2016, No. 6, pp. 121–144.
This paper was recommended for publication by A.I. Kibzun, a member of the Editorial Board
Rights and permissions
About this article
Cite this article
Khametov, V.M., Shelemekh, E.A. Extremal measures and hedging in American options. Autom Remote Control 77, 1041–1059 (2016). https://doi.org/10.1134/S0005117916060084
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0005117916060084