Nothing Special   »   [go: up one dir, main page]

Skip to main content

Pricing Multiple Exercise American Options by Linear Programming

  • Chapter
  • First Online:
Optimal Financial Decision Making under Uncertainty

Abstract

We consider the problem of computing the lower hedging price of American options of the call and put type written on a non-dividend paying stock in a non-recombinant tree model with multiple exercise rights. We prove using a simple argument that an optimal exercise policy for an option with h exercise rights is to delay exercise until the last h periods. The result implies that the mixed-integer programming model for computing the lower hedging price and the optimal exercise and hedging policy has a linear programming relaxation that is exact, i.e., the relaxation admits an optimal solution where all variables required to be integral have integer values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    An earlier version of the paper had quite a long proof for the case h = 2 and restricted to binomial and trinomial trees. It was based on an elaborate primal-dual construction. The present proof was offered by an anonymous reviewer of the earlier version, to whom we are thankful.

References

  1. O. Bardou, S. Bouthemy, G. Pagès, Optimal quantization for the pricing of swing options. Appl. Math. Financ. 16 (2), 187–217 (2009)

    Article  Google Scholar 

  2. O. Bardou, S. Bouthemy, G. Pagès, When are swing options bang-bang and how to use it? Int. J. Theor. Appl. Finance 13 (6), 867–899 (2010)

    Article  Google Scholar 

  3. C. Barrera-Esteve, F. Bergeret, C. Dossal, E. Gobet, A. Meziou, R. Munos, D. Reboul-Salze, Numerical methods for the pricing of swing options: a stochastic control approach. Methodol. Comput. Appl. Probab. 8 (4), 517–540 (2006)

    Article  Google Scholar 

  4. C. Bender, Dual pricing of multi-exercise options under volume constraints. Finance Stochast. 15 (1), 1–26 (2010)

    Article  Google Scholar 

  5. C. Bender, Primal and dual pricing of multiple exercise options in continuous time. SIAM J. Finan. Math. 2, 562–586 (2011)

    Article  Google Scholar 

  6. A. Bensoussan, On the theory of option pricing. Acta Appl. Math. 2, 139–158 (1984)

    Google Scholar 

  7. F. Black, M. Scholes, The pricing of options and corporate liabilities. J. Polit. Econ. 81, 637–654 (1973)

    Article  Google Scholar 

  8. B. Bouchard, E. Temam, On the hedging of American options in discrete time markets with proportional transaction costs. Electron. J. Probab. 10 (22), 746–760 (2005)

    Article  Google Scholar 

  9. R. Buckdahn, Y. Hu, Pricing of American contingent claims with jump stock price and constrained portfolios. Math. Oper. Res. 23, 177–203 (1998)

    Article  Google Scholar 

  10. A. Camcı, M.Ç. Pınar, Pricing American contingent claims by stochastic linear programming. Optimization 58 (6), 627–640 (2009)

    Article  Google Scholar 

  11. R. Carmona, S. Dayanık, Optimal multiple stopping of linear diffusions. Math. Oper. Res. 33 (2), 446–460 (2008)

    Article  Google Scholar 

  12. R. Carmona, N. Touzi, Optimal multiple stopping and valuation of swing options. Math. Financ. 18 (2), 239–268 (2008)

    Article  Google Scholar 

  13. P. Chalasani, S. Jha, Randomized stopping times and American option pricing with transaction costs. Math. Financ. 11, 33–77 (2001)

    Article  Google Scholar 

  14. J.C. Cox, M. Rubinstein, Options Markets (Prentice-Hall, Englewood Cliffs, NJ, 1985)

    Google Scholar 

  15. M. Davis, T. Zariphopoulou, American options and transaction fees, in The IMA Volumes in Mathematics and Its Applications, vol. 65, ed. by M. Davis (Springer, Berlin, 1995), pp. 47–62

    Google Scholar 

  16. J. Detemple, American Style Derivatives: Valuation and Computation. Financial Mathematics Series (Chapman & Hall/CRC, Boca Raton, 2005)

    Book  Google Scholar 

  17. C. Edirisinghe, V. Naik, R. Uppal, Optimal replication of options with transaction costs and trading restrictions. J. Financ. Quant. Anal. 28, 117–138 (1993)

    Article  Google Scholar 

  18. M. Figueroa, Pricing Multiple Interruptible-Swing Contracts. Technical report, Birkbeck, School of Economics, Mathematics & Statistics, Birkbeck Working Papers in Economics and Finance: 0606 (2006)

    Google Scholar 

  19. S.D. Flåm, Option pricing by mathematical programming. Optimization 57 (1), 165–182 (2008)

    Article  Google Scholar 

  20. H. Föllmer, A. Schied, Stochastic Finance: An Introduction in Discrete Time. De Gruyter Studies in Mathematics, vol. 27, 2nd edn. (Walter de Gruyter, Berlin, 2004)

    Google Scholar 

  21. G. Haarbrücker, D. Kuhn, Valuation of electricity swing options by multistage stochastic programming. Automatica 45 (4), 889–899 (2009)

    Article  Google Scholar 

  22. J.M. Harrison, D.M. Kreps, Martingales and arbitrage in multiperiod securities markets. J. Econ. Theor. 20, 381–408

    Google Scholar 

  23. A. Ibáñez, Valuation by simulation of contingent claims with multiple exercise opportunities. Math. Financ. 14 (2), 223–248 (2004)

    Article  Google Scholar 

  24. P. Jaillet, E.I. Ronn, S. Tompaidis, Valuation of commodity-based swing options. Manage. Sci. 50 (7), 909–921 (2004)

    Article  Google Scholar 

  25. I. Karatzas, On the pricing of American options. Appl. Math. Optim. 17, 37–60 (1988)

    Article  Google Scholar 

  26. I. Karatzas, S.G. Kou, Hedging American contingent claims with constrained portfolios. Finance Stochast. 2, 215–258 (1998)

    Article  Google Scholar 

  27. J. Keppo, Pricing of electricity swing options. J. Derivatives 11, 26–43 (2004)

    Article  Google Scholar 

  28. A.J. King, Duality and martingales: a stochastic programming perspective on contingent claims. Math. Programm. Ser. B 91, 543–562 (2002)

    Article  Google Scholar 

  29. F. Longstaff, E. Schwartz, Valuing American options by simulation: a simple least squares approach. Rev. Financ. Stud. 14 (1), 113–147 (2001)

    Article  Google Scholar 

  30. D.G. Luenberger, Investment Science (Oxford University Press, Oxford, 1998)

    Google Scholar 

  31. N. Meinshausen, B.M. Hambly, Monte Carlo methods for the valuation of multiple-exercise options. Math. Financ. 14 (4), 557–583 (2004)

    Article  Google Scholar 

  32. R. Myeni, The pricing of the American option. Ann. Appl. Probab. 2, 1–23 (1992)

    Article  Google Scholar 

  33. T. Pennanen, A. King, Arbitrage Pricing of American Contingent Claims in Incomplete Markets - A Convex Optimization Approach, Working paper, June (2006)

    Google Scholar 

  34. M.Ç. Pınar, A. Camcı, An integer programming model for pricing American contingent claims under transaction costs. Comput. Econ. 39, 1–12 (2012)

    Article  Google Scholar 

  35. T.R. Rockafellar, Convex Analysis (Princeton University Press, Princeton, NJ, 1970)

    Book  Google Scholar 

  36. J. Schoenmakers, A pure martingale dual for multiple stopping. Finance Stochast. 16, 319–334 (2012)

    Article  Google Scholar 

  37. A. Thompson, Valuation of path-dependent contingent claims with multiple exercise decisions over time: the case of take-or-pay. J. Financ. Quant. Anal. 30 (2), 271–293 (1995)

    Article  Google Scholar 

  38. K. Tokarz, T. Zastawniak, American contingent claims under small proportional transaction costs. J. Math. Econ. 43, 65–85 (2006)

    Article  Google Scholar 

  39. P. Vayanos, W. Wiesemann, D. Kuhn, Hedging electricity swing options in incomplete markets, in Proceedings of the 18th IFAC World Congress (2011), pp. 846–853

    Google Scholar 

  40. C. Winter, M. Wilhelm, Finite element valuation of swing options. J. Comput. Finance 11 (3), 107–132 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

Supported in part by a grant from the University of L’Aquila, as part of Research Grant Reti per la conoscenza e l’orientamento tecnico-scientifico per lo sviluppo della competitività (RE.C.O.TE.S.S.C.) POR 2007–2013-Action 4, funded by Regione Abruzzo and the European Social Fund 2007–2013. Revised twice, November and December 2013. The paper benefited from the comments of two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Ç. Pınar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Giandomenico, M., Pınar, M.Ç. (2017). Pricing Multiple Exercise American Options by Linear Programming. In: Consigli, G., Kuhn, D., Brandimarte, P. (eds) Optimal Financial Decision Making under Uncertainty. International Series in Operations Research & Management Science, vol 245. Springer, Cham. https://doi.org/10.1007/978-3-319-41613-7_6

Download citation

Publish with us

Policies and ethics