Feature intersection for agent-based customer churn prediction
Data Technologies and Applications
ISSN: 2514-9288
Article publication date: 20 August 2019
Issue publication date: 2 September 2019
Abstract
Purpose
Telecommunication has a decisive role in the development of technology in the current era. The number of mobile users with multiple SIM cards is increasing every second. Hence, telecommunication is a significant area in which big data technologies are needed. Competition among the telecommunication companies is high due to customer churn. Customer retention in telecom companies is one of the major problems. The paper aims to discuss this issue.
Design/methodology/approach
The authors recommend an Intersection-Randomized Algorithm (IRA) using MapReduce functions to avoid data duplication in the mobile user call data of telecommunication service providers. The authors use the agent-based model (ABM) to predict the complex mobile user behaviour to prevent customer churn with a particular telecommunication service provider.
Findings
The agent-based model increases the prediction accuracy due to the dynamic nature of agents. ABM suggests rules based on mobile user variable features using multiple agents.
Research limitations/implications
The authors have not considered the microscopic behaviour of the customer churn based on complex user behaviour.
Practical implications
This paper shows the effectiveness of the IRA along with the agent-based model to predict the mobile user churn behaviour. The advantage of this proposed model is as follows: the user churn prediction system is straightforward, cost-effective, flexible and distributed with good business profit.
Originality/value
This paper shows the customer churn prediction of complex human behaviour in an effective and flexible manner in a distributed environment using Intersection-Randomized MapReduce Algorithm using agent-based model.
Keywords
Citation
N., S., Samuel, P. and Chacko, M. (2019), "Feature intersection for agent-based customer churn prediction", Data Technologies and Applications, Vol. 53 No. 3, pp. 318-332. https://doi.org/10.1108/DTA-03-2019-0043
Publisher
:Emerald Publishing Limited
Copyright © 2019, Emerald Publishing Limited