Nothing Special   »   [go: up one dir, main page]

To read this content please select one of the options below:

Sensitivity analysis of mapping local image features into conceptual categories

Chih‐Fong Tsai (Department of Accounting and Information Technology, National Chung Cheng University, Chia Yi, Taiwan)
David C. Yen (Department of Decision Sciences and Management Information Systems, Farmer School of Business, Miami University, Oxford, Ohio, USA)

Library Hi Tech

ISSN: 0737-8831

Article publication date: 13 June 2008

503

Abstract

Purpose

Image classification or more specifically, annotating images with keywords is one of the important steps during image database indexing. However, the problem with current research in terms of image retrieval is more concentrated on how conceptual categories can be well represented by extracted, low level features for an effective classification. Consequently, image features representation including segmentation and low‐level feature extraction schemes must be genuinely effective to facilitate the process of classification. The purpose of this paper is to examine the effect on annotation effectiveness of using different (local) feature representation methods to map into conceptual categories.

Design/methodology/approach

This paper compares tiling (five and nine tiles) and regioning (five and nine regions) segmentation schemes and the extraction of combinations of color, texture, and edge features in terms of the effectiveness of a particular benchmark, automatic image annotation set up. Differences between effectiveness on concrete or abstract conceptual categories or keywords are further investigated, and progress towards establishing a particular benchmark approach is also reported.

Findings

In the context of local feature representation, the paper concludes that the combined color and texture features are the best to use for the five tiling and regioning schemes, and this evidence would form a good benchmark for future studies. Another interesting finding (but perhaps not surprising) is that when the number of concrete and abstract keywords increases or it is large (e.g. 100), abstract keywords are more difficult to assign correctly than the concrete ones.

Research limitations/implications

Future work could consider: conduct user‐centered evaluation instead of evaluation only by some chosen ground truth dataset, such as Corel, since this might impact effectiveness results; use of different numbers of categories for scalability analysis of image annotation as well as larger numbers of training and testing examples; use of Principle Component Analysis or Independent Component Analysis, or indeed machine learning techniques for low‐level feature selection; use of other segmentation schemes, especially more complex tiling schemes and other regioning schemes; use of different datasets, use of other low‐level features and/or combination of them; use of other machine learning techniques.

Originality/value

This paper is a good start for analyzing the mapping between some feature representation methods and various conceptual categories for future image annotation research.

Keywords

Citation

Tsai, C. and Yen, D.C. (2008), "Sensitivity analysis of mapping local image features into conceptual categories", Library Hi Tech, Vol. 26 No. 2, pp. 255-273. https://doi.org/10.1108/07378830810880351

Publisher

:

Emerald Group Publishing Limited

Copyright © 2008, Emerald Group Publishing Limited

Related articles