Nothing Special   »   [go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Microfluidic directional emission control of an azimuthally polarized radial fibre laser

Abstract

Lasers with cylindrically symmetric polarization states are predominantly based on whispering-gallery modes1,2,3,4,5,6,7, characterized by high angular momentum and dominated by azimuthal emission. Here, a zero-angular-momentum laser with purely radial emission is demonstrated. An axially invariant, cylindrical photonic-bandgap fibre cavity8 filled with a microfluidic gain medium plug is axially pumped, resulting in a unique radiating field pattern characterized by cylindrical symmetry and a fixed polarization pointed in the azimuthal direction. Encircling the fibre core is an array of electrically contacted and independently addressable liquid-crystal microchannels embedded in the fibre cladding. These channels modulate the polarized wavefront emanating from the fibre core, leading to a laser with a dynamically controlled intensity distribution spanning the full azimuthal angular range. This new capability, implemented monolithically within a single fibre, presents opportunities ranging from flexible multidirectional displays to minimally invasive directed light delivery systems for medical applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of radial and whispering-gallery modes.
Figure 2: Preform and fibre structure.
Figure 3: Microfluidic laser system.
Figure 4: Laser characterization.
Figure 5: Azimuthally controlled laser emission.

Similar content being viewed by others

References

  1. Chang, R. K. & Campillo, A. J. Optical Processes in Microcavities (World Scientific, 1996).

    Book  Google Scholar 

  2. McCall, S. L., Levi, A. F. J., Slusher, R. E., Pearton, S. J. & Logan, R. A. Whispering-gallery mode microdisk lasers. Appl. Phys. Lett. 60, 289–291 (1992).

    Article  ADS  Google Scholar 

  3. Knight, J. C., Driver, H. S. T., Hutcheon, R. J. & Robertson, G. N. Core-resonance capillary-fiber whispering-gallery-mode laser. Opt. Lett. 17, 1280–1282 (1992).

    Article  ADS  Google Scholar 

  4. Kawabe, Y. et al. Whispering-gallery-mode microring laser using a conjugated polymer. Appl. Phys. Lett. 72, 141–143 (1998).

    Article  ADS  Google Scholar 

  5. Moon, H-J., Chough, Y-T. & Kyungwon, A. Cylindrical microcavity laser based on the evanescent-wave-coupled gain. Phys. Rev. Lett. 85, 3161–3164 (2000).

    Article  ADS  Google Scholar 

  6. Malko, A. V. et al. From amplified spontaneous emission to microring lasing using nanocrystal quantum dot solids. Appl. Phys. Lett. 81, 1303–1305 (2002).

    Article  ADS  Google Scholar 

  7. Kazes, M., Lewis, D. Y., Ebenstein, Y., Mokari, T. & Banin, U. Lasing from semiconductor quantum rods in a cylindrical microcavity. Adv. Mater. 14, 317–321 (2002).

    Article  Google Scholar 

  8. Yeh, P., Yariv, A. & Marom, E. Theory of Bragg fiber. J. Opt. Soc. Am. 68, 1196–1201 (1978).

    Article  ADS  Google Scholar 

  9. Ball, G. A. & Morey, W. W. Continuously tunable single-mode erbium fiber laser. Opt. Lett. 17, 420–422 (1992).

    Article  ADS  Google Scholar 

  10. Dianov, E. M., Likhachev, M. E., Fevrier, S. Solid-core photonic bandgap fibers for high-power fiber lasers. IEEE J. Sel. Top. Quantum Electron. 15, 20–29 (2009).

    Article  ADS  Google Scholar 

  11. Wu, C. et al. Optically pumped surface-emitting DFB GaInAsP/InP lasers with circular grating. Electron. Lett. 27, 1819–1820 (1991).

    Article  Google Scholar 

  12. Erdogan, T. et al. Circularly symmetric operation of a concentric-circle-grating, surface-emitting, AlGaAs/GaAs quantum-well semiconductor laser. Appl. Phys. Lett. 60, 1921–1923 (1992).

    Article  ADS  Google Scholar 

  13. Labilloy, D. et al. High-finesse disk microcavity based on a circular Bragg reflector. Appl. Phys. Lett. 73, 1314–1316 (1998).

    Article  ADS  Google Scholar 

  14. Scheuer, J., Green, W. M. J., DeRose, G. & Yariv, A., Low-threshold two-dimensional annular Bragg lasers. Opt. Lett. 29, 2641–2643 (2004).

    Article  ADS  Google Scholar 

  15. Abouraddy, A. F. et al. Towards multimaterial multifunctional fibres that see, hear, sense and communicate. Nature Mater. 6, 336–347 (2007).

    Article  ADS  Google Scholar 

  16. Ruff, Z. et al. Polymer-composite fibers for transmitting high peak power pulses at 1.55 microns. Opt. Express 18, 15697–15703 (2010).

    Article  ADS  Google Scholar 

  17. Alkeskjold, T. T. et al. Integrating liquid crystal based optical devices in photonic crystal fibers. Opt. Quant. Electron. 39, 1009–1019 (2007).

    Article  Google Scholar 

  18. Kuhlmey, B. T., Eggleton, B. J. & Wu, D. K. C. Fluid-filled solid-core photonic bandgap fibers. J. Lightwave Technol. 27, 1617–1630 (2009).

    Article  ADS  Google Scholar 

  19. Shapira, O. et al. Surface-emitting fiber lasers. Opt. Express 14, 3929–3935 (2006).

    Article  ADS  Google Scholar 

  20. Eichler, H. J., Klein, U. & Langhans, D. Measurement of orientational relaxation times of Rhodamine 6G with a streak camera. Chem. Phys. Lett. 67, 21–23 (1979).

    Article  ADS  Google Scholar 

  21. Duarte, F. J. & Hillman, L. W. Dye Laser Principles (Academic Press, 1990).

    Google Scholar 

  22. Scifres, D. R., Streifer, W. & Burnham, R. D. Beam scanning with twin-stripe injection lasers. Appl. Phys. Lett. 33, 702–704 (1978).

    Article  ADS  Google Scholar 

  23. McManamon, P. F. et al. Optical phased array technology. Proc. IEEE 84, 268–298 (1996).

    Article  Google Scholar 

  24. Wang, X, Wilson, D., Muller, R., Maker, P. & Psaltis, D. Liquid-crystal blazed-grating beam deflector. Appl. Opt. 39, 6545–6555 (2000).

    Article  ADS  Google Scholar 

  25. Choi, M., Tanaka, T., Fukushima, T. & Harayama, T. Control of directional emission in quasistadium microcavity laser diodes with two electrodes. Appl. Phys. Lett. 88, 211110 (2006).

    Article  ADS  Google Scholar 

  26. Smith, N. R., Abeysinghe, D. C., Haus, J. W. & Heikenfeld, J. Agile wide-angle beam steering with electrowetting microprisms. Opt. Express 14, 6557–6563 (2006).

    Article  ADS  Google Scholar 

  27. Kurosaka, Y. et al. On-chip beam-steering photonic-crystal lasers. Nature Photon. 4, 447–450 (2010).

    Article  ADS  Google Scholar 

  28. Yeh, P. & Gu, C. Optics of Liquid Crystal Displays 2nd edn (John Wiley & Sons, 2010).

    Google Scholar 

  29. Dolmans, D. E., Fukumura, D. & Jain, R. K. Photodynamic therapy for cancer. Nature Rev. Cancer 3, 380–387 (2003).

    Article  Google Scholar 

  30. Rowland, K. J., Afshar, S., Stolyarov, A., Fink, Y & Monro, T. M. Bragg waveguides with low-index liquid cores. Opt. Express 20, 48–62 (2012).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

A.M.S. is grateful to F. Capasso, A.F. Abouraddy, H. Stone, Z. Wang, D. Shemuly, S. Danto, D. Deng, Z. Ruff, N. Orf and A. Nemiroski for fruitful discussions. The authors thank M. Stolyar for his help in engineering the first rapid prototype version of the fluidic/optical-fibre coupler, and A. Gallant at the MIT Central Machine Shop for producing the final version. J. Ryvkina is credited for the artwork in Supplementary Fig. S2. A.M.S. acknowledges support from the US National Science Foundation Graduate Research Fellowship. L.W. acknowledges support from the Technical University of Denmark. This work was supported in part by the Materials Research Science and Engineering Program of the US National Science Foundation (award no. DMR-0819762) and also in part by the US Army Research Office through the Institute for Soldier Nanotechnologies (contract no. W911NF-07-D-0004).

Author information

Authors and Affiliations

Authors

Contributions

A.M.S., L.W. and O.S. planned the experiments. A.M.S. and L.W performed the experiments. A.M.S., L.W. and F.S. designed the fibre structures. A.M.S. and L.W. fabricated the fibres. O.S. and S.L.C. carried out simulations. A.M.S., L.W., O.S., F.S., Y.F. and J.D.J. conceived the ideas. A.M.S., J.D.J. and Y.F. co-wrote the manuscript. J.D.J. and Y.F. supervised the research. All authors analysed the data.

Corresponding author

Correspondence to Yoel Fink.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 312 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stolyarov, A., Wei, L., Shapira, O. et al. Microfluidic directional emission control of an azimuthally polarized radial fibre laser. Nature Photon 6, 229–233 (2012). https://doi.org/10.1038/nphoton.2012.24

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2012.24

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing