Abstract
Carbon nanotubes exhibit a wealth of unique physical properties. By virtue of their exceptionally low mass and extreme stiffness they provide ultrahigh-quality mechanical resonances1, promise long electron spin coherence times in a nuclear-spin free lattice2,3 for quantum information processing and spintronics, and feature unprecedented tunability of optical transitions4,5 for optoelectronic applications6. Excitons in semiconducting single-walled carbon nanotubes7,8 could facilitate the upconversion of spin9, mechanical10 or hybrid spin–mechanical11 degrees of freedom to optical frequencies for efficient manipulation and detection. However, successful implementation of such schemes with carbon nanotubes has been impeded by rapid exciton decoherence at non-radiative quenching sites12, environmental dephasing13 and emission intermittence14. Here we demonstrate that these limitations may be overcome by exciton localization in suspended carbon nanotubes. For excitons localized in nanotube quantum dots we found narrow optical lines free of spectral wandering, radiative exciton lifetimes15,16,17 and effectively suppressed blinking. Our findings identify the great potential of localized excitons for efficient and spectrally precise interfacing of photons, phonons and spins in novel carbon nanotube-based quantum devices.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Hüttel, A. K. et al. Carbon nanotubes as ultrahigh quality factor mechanical resonators. Nano Lett. 9, 2547–2552 (2009).
Bulaev, D. V., Trauzettel, B. & Loss, D. Spin–orbit interaction and anomalous spin relaxation in carbon nanotube quantum dots. Phys. Rev. B 77, 235301 (2008).
Balasubramanian, G. et al. Ultralong spin coherence time in isotopically engineered diamond. Nature Mater. 8, 383–387 (2009).
O'Connell, M. J. et al. Band gap fluorescence from individual single-walled carbon nanotubes. Science 297, 593–596 (2002).
Bachilo, S. M. et al. Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298, 2361–2366 (2002).
Avouris, P., Freitag, M. & Perebeinos, V. Carbon-nanotube photonics and optoelectronics. Nature Photon. 2, 341–350 (2008).
Wang, F., Dukovic, G., Brus, L. E. & Heinz, T. F. The optical resonances in carbon nanotubes arise from excitons. Science 308, 838–841 (2005).
Maultzsch, J. et al. Exciton binding energies in carbon nanotubes from two-photon photoluminescence. Phys. Rev. B 72, 241402 (2005).
Galland, C. & Imamoğlu, A. All-optical manipulation of electron spins in carbon-nanotube quantum dots. Phys. Rev. Lett. 101, 157404 (2008).
Wilson-Rae, I., Galland, C., Zwerger, W. & Imamoğlu, A. Exciton-assisted optomechanics with suspended carbon nanotubes. New J. Phys. 14, 115003 (2012).
Pályi, A., Struck, P. R., Rudner, M., Flensberg, K. & Burkard, G. Spin-orbit-induced strong coupling of a single spin to a nanomechanical resonator. Phys. Rev. Lett. 108, 206811 (2012).
Cognet, L. et al. Stepwise quenching of exciton fluorescence in carbon nanotubes by single-molecule reactions. Science 316, 1465–1468 (2007).
Crochet, J. J. et al. Disorder limited exciton transport in colloidal single-wall carbon nanotubes. Nano Lett. 12, 5091–5096 (2012).
Walden-Newman, W., Sarpkaya, I. & Strauf, S. Quantum light signatures and nanosecond spectral diffusion from cavity-embedded carbon nanotubes. Nano Lett. 12, 1934–1941 (2012).
Perebeinos, V., Tersoff, J. & Avouris, P. Scaling of excitons in carbon nanotubes. Phys. Rev. Lett. 92, 257402 (2004).
Perebeinos, V., Tersoff, J. & Avouris, P. Radiative lifetime of excitons in carbon nanotubes. Nano Lett. 5, 2495–2499 (2005).
Spataru, C. D., Ismail-Beigi, S., Capaz, R. B. & Louie, S. G. Theory and ab initio calculation of radiative lifetime of excitons in semiconducting carbon nanotubes. Phys. Rev. Lett. 95, 247402 (2005).
Lefebvre, J., Austing, D. G., Bond, J. & Finnie, P. Photoluminescence imaging of suspended single-walled carbon nanotubes. Nano Lett. 6, 1603–1608 (2006).
Lüer, L. et al. Size and mobility of excitons in (6, 5) carbon nanotubes. Nature Phys. 5, 54–58 (2009).
Cao, J., Wang, Q. & Dai, H. Electron transport in very clean, as-grown suspended carbon nanotubes. Nature Mater. 4, 745–749 (2005).
Hartschuh, A., Pedrosa, H. N., Novotny, L. & Krauss, T. D. Simultaneous fluorescence and Raman scattering from single carbon nanotubes. Science 301, 1354–1356 (2003).
Lefebvre, J., Finnie, P. & Homma, Y. Temperature-dependent photoluminescence from single-walled carbon nanotubes. Phys. Rev. B 70, 045419 (2004).
Htoon, H., O'Connell, M. J., Cox, P. J., Doorn, S. K. & Klimov, V. I. Low temperature emission spectra of individual single-walled carbon nanotubes: multiplicity of subspecies within single-species nanotube ensembles. Phys. Rev. Lett. 93, 027401 (2004).
Högele, A., Galland, C., Winger, M. & Imamoğlu, A. Photon antibunching in the photoluminescence spectra of a single carbon nanotube. Phys. Rev. Lett. 100, 217401 (2008).
Galland, C., Högele, A., Türeci, H. E. & Imamoğlu, A. Non-Markovian decoherence of localized nanotube excitons by acoustic phonons. Phys. Rev. Lett. 101, 067402 (2008).
Matsuda, K., Inoue, T., Murakami, Y., Maruyama, S. & Kanemitsu, Y. Exciton fine structure in a single carbon nanotube revealed through spectral diffusion. Phys. Rev. B 77, 193405 (2008).
Gokus, T. et al. Mono- and biexponential luminescence decays of individual single-walled carbon nanotubes. J. Phys. Chem. C 114, 14025–14028 (2010).
Hagen, A. et al. Exponential decay lifetimes of excitons in individual single-walled carbon nanotubes. Phys. Rev. Lett. 95, 197401 (2005).
Georgi, C., Böhmler, M., Qian, H., Novotny, L. & Hartschuh, A. Probing exciton propagation and quenching in carbon nanotubes with near-field optical microscopy. Phys. Status Solidi (b) 246, 2683–2688 (2009).
Capaz, R. B., Spataru, C. D., Ismail-Beigi, S. & Louie, S. G. Diameter and chirality dependence of exciton properties in carbon nanotubes. Phys. Rev. B 74, 121401 (2006).
Murakami, Y. & Kono, J. Nonlinear photoluminescence excitation spectroscopy of carbon nanotubes: exploring the upper density limit of one-dimensional excitons. Phys. Rev. Lett. 102, 037401 (2009).
Tayo, B. O. & Rotkin, S. V. Charge impurity as a localization center for singlet excitons in single-wall nanotubes. Phys. Rev. B 86, 125431 (2012).
Gomes, K. K., Mar, W., Ko, W., Guinea, F. & Manoharan, H. C. Designer Dirac fermions and topological phases in molecular graphene. Nature 483, 306–310 (2012).
Acknowledgements
The authors thank V. Perebeinos for pointing out analytical expressions for the calculation of exciton lifetimes, C. Schönenberger and M. Weiss for introducing us to their CVD technique, S. Stapfner and F. Storek for their contribution to nanotube synthesis, R. Schreiber and P. Nickels for assistance with TEM imaging, P. Maletinsky for critical reading of the manuscript and J. P. Kotthaus for continuous support. The authors acknowledge valuable discussions with A. Imamoğlu, S. Rotkin, A. Srivastava and I. Wilson-Rae. This research was funded by the German Excellence Initiative via the Nanosystems Initiative Munich (NIM), with financial support from the Center for NanoScience (CeNS) and LMUexcellent.
Author information
Authors and Affiliations
Contributions
M.S.H., R.D. and C.B. developed the CNT synthesis and fabricated the samples. M.S.H. and J.T.G. set up the experiment. M.S.H., J.T.G., J.N., R.D. and C.B. performed the measurements. M.S.H., J.N. and A.H. analysed the data and performed the theoretical modelling. M.S.H. and A.H. prepared the figures and wrote the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information
Supplementary information (PDF 1533 kb)
Rights and permissions
About this article
Cite this article
Hofmann, M., Glückert, J., Noé, J. et al. Bright, long-lived and coherent excitons in carbon nanotube quantum dots. Nature Nanotech 8, 502–505 (2013). https://doi.org/10.1038/nnano.2013.119
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nnano.2013.119