Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Time-transformations for reversible variable stepsize integration

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The development of a Sundman-type time-transformation for reversible variable stepsize integration of few-body problems is discussed. While a time-transformation based on minimum particle separation is suitable if the collisions only occur pairwise and isolated in time, the control of stepsize is typically much more difficult for a three-body close approach. Nonetheless, we find that a suitable choice of time-transformation based on particle separation can work quite well for certain types of three-body simulations, particularly those involving very steep repulsive walls. We confirm these observations using numerical examples from Lennard-Jones scattering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U.M. Ascher and S. Reich, On some difficulties in integrating highly oscillatory Hamiltonian systems, Lecture Notes in Comput. Sci. Engrg., to appear.

  2. E. Barth, B. Leimkuhler and S. Reich, A semi-explicit, variable-stepsize, time-reversible integrator for constrained dynamics, SIAM J. Sci. Comput., to appear.

  3. G. Benettin and A. Giorgilli, On the Hamiltonian interpolation of near to the identity symplectic mappings with application to symplectic integration algorithms, J. Statist. Phys. 74 (1994) 1117-1143.

    Article  MATH  MathSciNet  Google Scholar 

  4. C.J. Budd and G.J. Collins, Symmetry based numerical methods for partial differential equations, in: Proc. of the 1997 Dundee Conf. on Numerical Analysis (Addison-Wesley/Longman, 1997) p. 16.

  5. S. Cirilli, E. Hairer and B. Leimkuhler, Asymptotic error analysis of the adaptive Verlet method, Preprint.

  6. Z. Ge and J.E. Marsden, Lie-Poisson integrators and Lie-Poisson Hamiltonian-Jacobi theory, Phys. Lett. A 133 (1988) 134-139.

    Article  MathSciNet  Google Scholar 

  7. E. Hairer, Variable time step integration with symplectic methods, Appl. Numer. Math. 25 (1997) 219-227.

    Article  MATH  MathSciNet  Google Scholar 

  8. E. Hairer and C. Lubich, The lifespan of backward error analysis for numerical integrators, Numer. Math. 76 (1997) 441-462.

    Article  MATH  MathSciNet  Google Scholar 

  9. I.N. Herstein, Topics in Algebra, 2nd ed. (Wiley, New York, 1975).

    Google Scholar 

  10. W. Huang and B. Leimkuhler, The adaptive Verlet method, SIAM J. Sci. Comput. 18 (1997) 239-256.

    Article  MATH  MathSciNet  Google Scholar 

  11. P. Hut, J. Makino and S. McMillan, Building a better leapfrog, Astrophys. J. 443 (1995) L93-L96.

    Article  Google Scholar 

  12. R.A. Labudde and D. Greenspan, Energy and momentum conserving methods of arbitrary order for the numerical integration of equations of motion. Part I, Numer. Math. 25 (1976) 323-346.

    Article  MATH  MathSciNet  Google Scholar 

  13. R.A. Labudde and D. Greenspan, Energy and momentum conserving methods of arbitrary order for the numerical integration of equations of motion. Part II, Numer. Math. 26 (1976) 1-16.

    Article  MATH  MathSciNet  Google Scholar 

  14. B. Leimkuhler, Reversible adaptive regularization: perturbed Kepler motion and classical atomic trajectories, Phil. Trans. Roy. Soc. (1997, submitted); NA Report, DAMTP, Cambridge.

    Google Scholar 

  15. S. Reich, Backward error analysis for numerical integrators, SIAM J. Numer. Anal. (1996, submitted).

  16. J.M. Sanz-Serna and M.P. Calvo, Numerical Hamiltonian Problems (Chapman and Hall, New York, 1995).

    Google Scholar 

  17. J.C. Simo and O. Gonzalez, On the stability of symplectic and energy-momentum algorithms for nonlinear Hamiltonian systems with symmetry, Comput. Methods Appl. Mech. Engrg. 134 (1996) 197-222.

    Article  MATH  MathSciNet  Google Scholar 

  18. D. Stoffer, Variable steps for reversible methods, Computing 55 (1995) 1-22.

    Article  MATH  MathSciNet  Google Scholar 

  19. J. Waldvogel, A new regularization of the planar problem of three bodies, Celest. Mech. 6 (1972) 221-231.

    Article  MATH  MathSciNet  Google Scholar 

  20. K. Zare and V. Szebehely, Time transformations for the extended phase space, Celest. Mech. 11 (1975) 469-482.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bond, S.D., Leimkuhler, B.J. Time-transformations for reversible variable stepsize integration. Numerical Algorithms 19, 55–71 (1998). https://doi.org/10.1023/A:1019127111709

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019127111709

Navigation