Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

On the Hamiltonian interpolation of near-to-the identity symplectic mappings with application to symplectic integration algorithms

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We reconsider the problem of the Hamiltonian interpolation of symplectic mappings. Following Moser's scheme, we prove that for any mapping ψε, analytic and ε-close to the identity, there exists an analytic autonomous Hamiltonian system, Hε such that its time-one mapping Φ differs from ψε by a quantity exponentially small in 1/ε. This result is applied, in particular, to the problem of numerical integration of Hamiltonian systems by symplectic algorithms; it turns out that, when using an analytic symplectic algorithm of orders to integrate a Hamiltonian systemK, one actually follows “exactly,” namely within the computer roundoff error, the trajectories of the interpolating Hamiltonian Hε, or equivalently of the rescaled Hamiltonian Kε-1Hε, which differs fromK, but turns out to be ε5 close to it. Special attention is devoted to numerical integration for scattering problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Moser, Lectures on Hamiltonian systems,Mem. Am. Math. Soc. 81:1 (1968).

    Google Scholar 

  2. H. Shniad,Celestial Mechanics 2:114–120 (1969).

    Google Scholar 

  3. J. Henrard,Celestial Mechanics 10:497 (1974).

    Google Scholar 

  4. A. I. Neishtadt,Prikl. Matem. Mekan. 48:197 (1984) [PMM USSR 45:133 (1984)].

    Google Scholar 

  5. A. Deprit,Celestial Mechanics 1:12–30 (1969).

    Google Scholar 

  6. P. J. Channel and C. Scovel,Nonlinearity 3:231–259 (1990).

    Google Scholar 

  7. C. Scovel,Phys. Lett. A 159:396–400 (1991).

    Google Scholar 

  8. R. I. McLachlan and P. Atela,Nonlinearity 5:541–562 (1992).

    Google Scholar 

  9. H. J. C. Berendsen and W. F. Van Guntsen, Practical algorithms for dynamics simulations, inMolecular-Dynamics Simulation of Statistical Mechanical System, G. Ciccotti and W. G. Hoover, eds. (North-Holland, Amsterdam, 1986).

    Google Scholar 

  10. O. Baldan and G. Benettin,J. Stat. Phys..62: 201 (1991).

    Google Scholar 

  11. G. Benettin, L. Galgani, and A. Giorgilli,Commun. Math. Phys. 113:87 (1987).

    Google Scholar 

  12. G. Benettin, L. Galgani, and A. Giorgilli,Commun. Math. Phys. 121:557 (1989).

    Google Scholar 

  13. F. Fassò,J. Appl. Math. Phys. (ZAMP) 41:843 (1990).

    Google Scholar 

  14. G. Benettin and F. Fassò,J. Stat. Phys. 63:737 (1991).

    Google Scholar 

  15. G. Benettin, A. Carati, and P. Sempio,J. Stat. Phys. 73:175 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benettin, G., Giorgilli, A. On the Hamiltonian interpolation of near-to-the identity symplectic mappings with application to symplectic integration algorithms. J Stat Phys 74, 1117–1143 (1994). https://doi.org/10.1007/BF02188219

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02188219

Key Words

Navigation