Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-11T20:04:05.815Z Has data issue: false hasContentIssue false

Evidence of distant spiral arms in the Galactic disk quadrant IV from VVV red clump giants

Published online by Cambridge University Press:  09 September 2022

R. Kammers*
Affiliation:
Departamento de Física, Universidade Federal de Santa Catarina, Trindade 88040-900, Florianópolis, SC, Brazil
R. K. Saito
Affiliation:
Departamento de Física, Universidade Federal de Santa Catarina, Trindade 88040-900, Florianópolis, SC, Brazil
E. Botan
Affiliation:
Departamento de Física, Universidade Federal de Santa Catarina, Trindade 88040-900, Florianópolis, SC, Brazil Instituto de Ciências Naturais, Humanas e Sociais, Universidade Federal de Mato Grosso, Res. Cidade Jardim, 78550-728, Sinop, MT, Brazil
D. Minniti
Affiliation:
Instituto de Astrofísica, Facultad de Ciencias Exactas, Universidad Andres Bello, Av. Fernandez Concha 700, Las Condes, Santiago, Chile Vatican Observatory, V00120 Vatican City State, Italy
J. Alonso-García
Affiliation:
Centro de Astronomía (CITEVA), Universidad de Antofagasta, Av. Angamos 601, Antofagasta, Chile Millennium Institute of Astrophysics, Nuncio Monseñor Sotero Sanz 100, Of. 104, Providencia, Santiago, Chile
L. C. Smith
Affiliation:
Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK
P. W. Lucas
Affiliation:
Centre for Astrophysics Research, School of Physics, Astronomy and Mathematics, University of Hertfordshire, College Lane, Hatfield AL10 9AB, UK
*
Corresponding author: R. Kammers, email: betokammers@gmail.com.

Abstract

The discovery of new clear windows in the Galactic plane using the VVV near-IR extinction maps allows the study of the structure of the Milky Way (MW) disk. The ultimate goal of this work is to map the spiral arms in the far side of the MW, which is a relatively unexplored region of our Galaxy, using red clump (RC) giants as distance indicators. We search for near-IR clear windows located at low Galactic latitudes ( $|b|< 1$ deg) in the MW disk using the VVV near-IR extinction maps. We have identified two new windows named VVV WIN 1607–5258 and VVV WIN 1475–5877, respectively, that complement the previously known window VVV WIN 1713–3939. We analyse the distribution of RC stars in these three clear near-IR windows and measure their number density along the line of sight. This allows us to find overdensities in the distribution and measure their distances along the line of sight. We then use the VVV proper motions in order to measure the kinematics of the RC stars at different distances. We find enhancements in the distance distribution of RC giants in all the studied windows, interpreting them as the presence of spiral arms in the MW disk. These structures are absent in the current models of synthetic population for the same MW lines of sight. We were able to trace the end of the Galactic bar, the Norma arm, as well as the Scutum–Centaurus arm in the far disk. Using the VVV proper motions, we measure the kinematics for these Galactic features, confirming that they share the bulk rotation of the Galactic disk.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of the Astronomical Society of Australia

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alonso-García, J., et al. 2018, A&A, 619, A4Google Scholar
Alves, D. R., Rejkuba, M., Minniti, D., & Cook, K. H. 2002, ApJ, 573, L51Google Scholar
Anders, F., et al. 2019, A&A, 628, A94Google Scholar
Arp, H. 1965, ApJ, 141, 43CrossRefGoogle Scholar
Baade, W. 1951, Publications of Michigan Observatory, 10, 7Google Scholar
Bland-Hawthorn, J., & Gerhard, O. 2016, ARA&A, 54, 529CrossRefGoogle Scholar
Camargo, D., Bonatto, C., & Bica, E. 2015, MNRAS, 450, 4150CrossRefGoogle Scholar
Churchwell, E., et al. 2009, PASP, 121, 213CrossRefGoogle Scholar
Gaia Collaboration, , et al. 2016, A&A, 595, A2Google Scholar
Gaia Collaboration, , et al. 2021, A&A, 649, A1Google Scholar
Girardi, L., et al. 2005, A&A, 436, 895CrossRefGoogle Scholar
Girardi, L. 2016, ARA&A, 54, 95Google Scholar
Gonzalez, O. A., et al. 2011, A&A, 534, L14CrossRefGoogle Scholar
Gonzalez, O. A., et al. 2018, MNRAS, 481, L130Google Scholar
Gravity Collaboration, , et al. 2019, A&A, 625, L10Google Scholar
López- Corredoira, M. 2014, A&A, 563, A128Google Scholar
Marshall, D. J., Robin, A. C., Reylé, C., Schultheis, M., & Picaud, S. 2006, A&A, 453, 635CrossRefGoogle Scholar
Minniti, D., et al. 2010, NewA, 15, 433CrossRefGoogle Scholar
Minniti, D., et al. 2011, ApJl, 733, L43CrossRefGoogle Scholar
Minniti, D., et al. 2018, A&A, 616, A26CrossRefGoogle Scholar
Momany, Y., et al. 2006, A&A, 451, 515CrossRefGoogle Scholar
Nataf, D. M., Gould, A. P., Pinsonneault, M. H., & Udalski, A. 2013, ApJ, 766, 77CrossRefGoogle Scholar
Nataf, D. M., Udalski, A., Gould, A., & Pinsonneault, M. H. 2011, ApJ, 730, 118CrossRefGoogle Scholar
N, idever, D. L., Zasowski, G., & Majewski, S. R. 2012, ApJs, 201, 35Google Scholar
Poggio, E., et al. 2018, MNRAS, 481, L21CrossRefGoogle Scholar
Poleski, R. 2013, arXiv:1306.2945Google Scholar
Rattenbury, N. J., et al. 2007, MNRAS, 378, 1064Google Scholar
Reid, M. J., et al. 2014, ApJ, 783, 130Google Scholar
Reid, M. J., et al. 2019, ApJ, 885, 131Google Scholar
Rezaei, K h., S., et al. 2018, A&A, 618, A168Google Scholar
Robin, A. C., Reylé, C., Derrière, S., & Picaud, S. 2003, A&A, 409, 523CrossRefGoogle Scholar
Robitaille, T. P., et al. 2012, A&A, 545, A39CrossRefGoogle Scholar
Ruiz-Dern, L., Babusiaux, C., Arenou, F., Turon, C., & Lallement, R. 2018, A&A, 609, A116CrossRefGoogle Scholar
Saito, R. K., et al. 2011, AJ, 142, 76Google Scholar
Saito, R. K., et al. 2012, A&A, 537, A107Google Scholar
Saito, R. K., et al., 2020, MNRAS, 494, L32CrossRefGoogle Scholar
Schönrich, R. 2012, MNRAS, 427, 274CrossRefGoogle Scholar
Smith, L. C., et al. 2018, MNRAS, 474, 1826Google Scholar
Soto, M., et al. 2019, MNRAS, 488, 2650Google Scholar
Surot, F., et al. 2019, A&A, 623, A168Google Scholar
Vallée, J. P. 2017, AstRv, 13, 113Google Scholar
van den Bergh, S. 1971, AJ, 76, 1082CrossRefGoogle Scholar
Wegg, C., Gerhard, O., & Portail, M. 2015, MNRAS, 450, 405 0 CrossRefGoogle Scholar