No CrossRef data available.
Article contents
ON SUPERSETS OF NON-LOW$_2$ SETS
Part of:
Computability and recursion theory
Published online by Cambridge University Press: 13 September 2021
Abstract
We solve a longstanding question of Soare by showing that if ${\mathbf d}$ is a non-low $_2$ computably enumerable degree then ${\mathbf d}$ contains a c.e. set with no r-maximal c.e. superset.
MSC classification
- Type
- Article
- Information
- Copyright
- © The Author(s), 2021. Published by Cambridge University Press on behalf of Association for Symbolic Logic
References
REFERENCES
Downey, R. and Shore, R., Degree theoretical definitions of the low 2 recursively enumerable sets, this Journal, vol. 60 (1995), pp. 727–756.Google Scholar
Lachlan, A., Degrees of recursively enumerable sets with no maximal supersets, this Journal, vol. 33 (1968), pp. 431–443.Google Scholar
Lerman, M.,
Degrees of Unsolvability
, Springer, New York, 1983.10.1007/978-3-662-21755-9CrossRefGoogle Scholar
Martin, D., Classes of recursively enumerable sets and degrees of unsolvability. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 12 (1966), pp. 295–310.CrossRefGoogle Scholar
Shoenfield, J., Degrees of classes or r.e. sets, this Journal, vol. 41 (1976), pp. 695–696.Google Scholar
Soare, R.I., Automorphisms of the lattice of recursively enumerable sets, part II: Low sets. Annals of Mathematical Logic, vol. 22 (1982), pp. 69–107.CrossRefGoogle Scholar
Soare, R.I., Recursively Enumerable Sets and Degrees, Springer, New York, 1987.CrossRefGoogle Scholar