Article contents
INITIAL SELF-EMBEDDINGS OF MODELS OF SET THEORY
Published online by Cambridge University Press: 13 August 2021
Abstract
By a classical theorem of Harvey Friedman (1973), every countable nonstandard model $\mathcal {M}$ of a sufficiently strong fragment of ZF has a proper rank-initial self-embedding j, i.e., j is a self-embedding of $\mathcal {M}$ such that $j[\mathcal {M}]\subsetneq \mathcal {M}$ , and the ordinal rank of each member of $j[\mathcal {M}]$ is less than the ordinal rank of each element of $\mathcal {M}\setminus j[\mathcal {M}]$ . Here, we investigate the larger family of proper initial-embeddings j of models $\mathcal {M}$ of fragments of set theory, where the image of j is a transitive submodel of $\mathcal {M}$ . Our results include the following three theorems. In what follows, $\mathrm {ZF}^-$ is $\mathrm {ZF}$ without the power set axiom; $\mathrm {WO}$ is the axiom stating that every set can be well-ordered; $\mathrm {WF}(\mathcal {M})$ is the well-founded part of $\mathcal {M}$ ; and $\Pi ^1_\infty \text{-}\mathrm {DC}_\alpha $ is the full scheme of dependent choice of length $\alpha $ .
Theorem A.
There is an $\omega $ -standard countable nonstandard model $\mathcal {M}$ of $\mathrm {ZF}^-+\mathrm {WO}$ that carries no initial self-embedding $j:\mathcal {M} \longrightarrow \mathcal {M}$ other than the identity embedding.
Theorem B.
Every countable $\omega $ -nonstandard model $\mathcal {M}$ of $\ \mathrm {ZF}$ is isomorphic to a transitive submodel of the hereditarily countable sets of its own constructible universe $L^{\mathcal {M}}$ .
Theorem C.
The following three conditions are equivalent for a countable nonstandard model $\mathcal {M}$ of $\mathrm {ZF}^{-}+\mathrm {WO}+\forall \alpha \ \Pi ^1_\infty \text{-}\mathrm {DC}_\alpha $ .
(I) There is a cardinal in $\mathcal {M}$ that is a strict upper bound for the cardinality of each member of $\mathrm {WF}(\mathcal {M})$ .
(II) $\mathrm {WF}(\mathcal {M})$ satisfies the powerset axiom.
(III) For all $n \in \omega $ and for all $b \in M$ , there exists a proper initial self-embedding $j: \mathcal {M} \longrightarrow \mathcal {M}$ such that $b \in \mathrm {rng}(j)$ and $j[\mathcal {M}] \prec _n \mathcal {M}$ .
MSC classification
- Type
- Article
- Information
- Copyright
- © Association for Symbolic Logic 2021
References
- 1
- Cited by