Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-22T14:59:23.061Z Has data issue: false hasContentIssue false

A general lower bound of parameter estimation for reflected Ornstein–Uhlenbeck processes

Published online by Cambridge University Press:  24 March 2016

Qing-Pei Zang*
Affiliation:
Department of Mathematics, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China.
Li-Xin Zhang
Affiliation:
Department of Mathematics, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China.
*
** Email address: zqphunhu@hytc.edu.cn

Abstract

A reflected Ornstein–Uhlenbeck process is a process that returns continuously and immediately to the interior of the state space when it attains a certain boundary. It is an extended model of the traditional Ornstein–Uhlenbeck process being extensively used in finance as a one-factor short-term interest rate model. Under some mild conditions, this paper is devoted to the study of the analogue of the Cramer–Rao lower bound of a general class of parameter estimation of the unknown parameter in reflected Ornstein–Uhlenbeck processes.

Type
Research Papers
Copyright
Copyright © Applied Probability Trust 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Asmussen, S. and Pihlsgård, M. (2007). Loss rates for Lévy processes with two reflecting barriers. Math. Operat. Res. 32, 308321. Google Scholar
[2]Asmussen, S., Avram, F. and Pistorius, M. R. (2004). Russian and American put options under exponential phase-type Lévy models. Stoch. Process. Appl. 109, 79111. Google Scholar
[3]Ata, B., Harrison, J. M. and Shepp, L. A. (2005). Drift rate control of a Brownian processing system. Ann. Appl. Prob. 15, 11451160. Google Scholar
[4]Atar, R. and Budhiraja, A. (2002). Stability properties of constrained jump-diffusion processes. Electron. J. Prob. 7, 31pp. Google Scholar
[5]Avram, F., Kyprianou, A. E. and Pistorius, M. R. (2004). Exit problems for spectrally negative Lévy processes and applications to (Canadized) Russian options. Ann. Appl. Prob. 14, 215238. Google Scholar
[6]Avram, F., Palmowski, Z. and Pistorius, M. R. (2007). On the optimal dividend problem for a spectrally negative Lévy process. Ann. Appl. Prob. 17, 156180. Google Scholar
[7]Bishwal, J. P. N. (1999). Large deviations inequalities for the maximum likelihood estimator and the Bayes estimators in nonlinear stochastic differential equations. Statist. Prob. Lett. 43, 207215. Google Scholar
[8]Bishwal, J. P. N. (2008). Parameter Estimation in Stochastic Differential Equations (Lecture Notes Math. 1923). Springer, Berlin. CrossRefGoogle Scholar
[9]Bishwal, J. P. N. (2010). Maximum likelihood estimation in Skrorohod stochastic differential equations. Proc. Amer. Math. Soc. 138, 14711478. Google Scholar
[10]Bo, L. and Yang, X. (2012). Sequential maximum likelihood estimation for reflected generalized Ornstein–Uhlenbeck processes. Statist. Prob. Lett. 82, 13741382. Google Scholar
[11]Bo, L., Wang, Y. and Yang, X. (2011). Some integral functionals of reflected SDEs and their applications in finance. Quant. Finance 11, 343348. Google Scholar
[12]Bo, L., Ren, G., Wang, Y. and Yang, X. (2013). First passage times of reflected generalized Ornstein–Uhlenbeck processes. Stoch. Dynamics 13, 16pp. Google Scholar
[13]Bo, L., Tang, D., Wang, Y. and Yang, X. (2011). On the conditional default probability in a regulated market: a structural approach. Quant. Finance 11, 16951702. Google Scholar
[14]Bo, L., Wang, Y., Yang, X. and Zhang, G. (2011). Maximum likelihood estimation for reflected Ornstein–Uhlenbeck processes. J. Statist. Planning Inference 141, 588596. Google Scholar
[15]Fernique, X. (1975). Regularité des trajectoires des fonctions aléatoires gaussiennes. In École d'Été de Probabilités de Saint-Flour, IV-1974 (Lecture Notes Math. 480), Springer, Berlin, pp. 196. Google Scholar
[16]Goldstein, R. S. and Keirstead, W. P. (1997). On the term structure of interest rates in the presence of reflecting and absorbing boundaries. Preprint. Available at http://dx.doi.org/10.2139/ssrn.19840. Google Scholar
[17]Hanson, S. D., Myers, R. J. and Hilker, J. H. (1999). Hedging with futures and options under a truncated cash price distribution. J. Agricul. Appl. Econom. 31, 449459. Google Scholar
[18]Harrison, J. M. (1985). Brownian Motion and Stochastic Flow Systems. John Wiley, New York. Google Scholar
[19]Hu, Y. and Lee, C. (2013). Drift parameter estimation for a reflected fractional Brownian motion based on its local time. J. Appl. Prob. 50, 592597. Google Scholar
[20]Hu, Y., Lee, C., Lee, M. H. and Song, J. (2015). Parameter estimation for reflected Ornstein–Uhlenbeck processes with discrete observations. Statist. Infer. Stoch. Process. 18, 279291. Google Scholar
[21]Huang, Z. Y. (2001). Foundation in Stochastic Calculus. Science Press, Beijing (in Chinese). Google Scholar
[22]Karatzas, I. and Shreve, S. E. (1991). Brownian Motion and Stochastic Calculus, 2nd edn. Springer, New York. Google Scholar
[23]Krugman, P. R. (1991). Target zones and exchange rate dynamics. Quart. J. Econom. 106, 669682. CrossRefGoogle Scholar
[24]Kutoyants, Y. A. (2004). Statistical Inference for Ergodic Diffusion Processes. Springer, London. Google Scholar
[25]Lee, C. and Song, J. (2013). On drift parameter estimation for reflected fractional Ornstein–Uhlenbeck processes. Preprint. Available at http://arxiv.org/abs/1303.6379. Google Scholar
[26]Lee, C., Bishwal, J. P. N. and Lee, M. H. (2012). Sequential maximum likelihood estimation for reflected Ornstein–Uhlenbeck processes. J. Statist. Planning Inference 142, 12341242. Google Scholar
[27]Linetsky, V. (2005). On the transition densities for reflected diffusions. Adv. Appl. Prob. 37, 435460. Google Scholar
[28]Lions, P.-L. and Sznitman, A.-S. (1984). Stochastic differential equations with reflecting boundary conditions. Commun. Pure Appl. Math. 37, 511537. Google Scholar
[29]Prakasa Rao, B. L. S. (1999). Statistical Inference for Diffusion Type Processes. Oxford University Press. Google Scholar
[30]Revuz, D. and Yor, M. (1999). Continuous Martingales and Brownian Motion, 3rd edn. Springer, Berlin. Google Scholar
[31]Ricciardi, L. M. and Sacerdote, L. (1987). On the probability densities of an Ornstein–Uhlenbeck process with a reflecting boundary. J. Appl. Prob. 24, 355369. Google Scholar
[32]Ward, A. R. and Glynn, P. W. (2003). A diffusion approximation for Markovian queue with reneging. Queueing Systems 43, 103128. Google Scholar
[33]Ward, A. R. and Glynn, P. W. (2003). Properties of the reflected Ornstein–Uhlenbeck process. Queueing Systems 44, 109123. Google Scholar
[34]Ward, A. R. and Glynn, P. W. (2005). A diffusion approximation for a GI/GI/1 queue with balking or reneging. Queueing Systems 50, 371400. Google Scholar
[35]Whitt, W. (2002). Stochastic-Process Limits. Springer, New York. Google Scholar
[36]Xing, X., Zhang, W. and Wang, Y. (2009). The stationary distributions of two classes of reflected Ornstein–Uhlenbeck processes. J. Appl. Prob. 46, 709720. Google Scholar