[1] Adams, D. 1996. Perturbative expansion in gauge theories on compact manifolds. hep-th/9602078.
[2] Affleck, I. 1980. Testing the instanton method. Phys. Lett., B 92, 149–152.
[3] Affleck, I. 1981. Quantum statistical metastability. Phys. Rev. Lett., 46, 388–391.
[4] Affleck, I. 1981. Mesons in the large N collective field method. Nucl. Phys., B 185, 346–364.
[5] Aguado, M. and Asorey, M. 2011. Theta-vacuum and large N limit in CPN−1 sigma models. Nucl. Phys., B 844, 243–265.
[6] Aharony, O., Gubser, S. S., Maldacena, J. M., Ooguri, H. and Oz, Y. 1990. Large N field theories, string theory and gravity. Phys. Rep., 323, 183–386.
[7] Akemann, G., Baik, J. and Di Francesco, P. (eds.) 2011. The Oxford Handbook ofRandom Matrix Theory. Oxford University Press.
[8] Akhiezer, N. I. 1990. Elements of the Theory of Elliptic Functions. American Mathematical Society.
[9] Altland, A. and Simons, B. 2006. Condensed Matter Field Theory. Cambridge University Press.
[10] Álvarez, G. 1988. Coupling-constant behavior of the resonances of the cubic anharmonic oscillator. Phys. Rev., A 37, 4079–4083.
[11] Álvarez, G. 2004. Langer–Cherry derivation of the multi-instanton expansion for the symmetric double well. J. Math. Phys., 45, 3095–3108.
[12] Álvarez-Gaumé, L. and Vázquez-Mozo, M. A. 2012. An Invitation to Quantum Field Theory. Springer-Verlag.
[13] Ambjorn, J., Chekhov, L., Kristjansen, C. F. and Makeenko, Y. 1993 Matrix model calculations beyond the spherical limit. Nucl. Phys., B 404, 127–172.
[14] Aniceto, I., Schiappa, R. and Vonk, M. 2012. The resurgence of instantons in string theory. Commun. Num. Theor. Phys., 6, 339–496.
[15] Appelquist, T. and Chodos, A. 1983. The quantum dynamics of Kaluza–Klein theories. Phys. Rev., D 28, 772–784.
[16] Atiyah, M. F., Hitchin, N. J., Drinfeld, V. G. and Manin, Y. I. 1978. Construction of instantons. Phys. Lett., A 65, 185–187.
[17] Baacke, J. and Lavrelashvili, G. 2004. One-loop corrections to the metastable vacuum decay. Phys. Rev., D 69, 025009.
[18] Balian, R., Parisi, G. and Voros, A. 1978. Discrepancies from asymptotic series and their relation to complex classical trajectories. Phys. Rev. Lett., 41, 1141–1144.
[19] Balian, R., Parisi, G. and Voros, A. 1979. Quartic oscillator. In: Feynman Path Integrals, Lecture Notes in Physics 106, pp. 337–360, Springer-Verlag.
[20] Bar-Natan, D. 1995. On the Vassiliev knot invariants. Topology, 34, 423–472.
[21] Bars, I. and Green, M. B. 1978. Poincare and gauge invariant two-dimensional QCD. Phys. Rev., D 17, 537–545.
[22] Basar, G., Dunne, G. V. and Unsal, M. 2013. Resurgence theory, ghost-instantons, and analytic continuation of path integrals. JHEP, 1310, 041.
[23] Bauer, C., Bali, G. S. and Pineda, A. 2012. Compelling evidence of renormalons in QCD from high order perturbative expansions. Phys. Rev. Lett., 108, 242002.
[24] Belavin, A. A. and Polyakov, A.M. 1977. Quantum fluctuations of pseudoparticles. Nucl. Phys., B 123, 429–444.
[25] Belavin, A. A., Polyakov, A. M., Schwartz, A. S. and Tyupkin, Y. S. 1975. Pseudoparticle solutions of the Yang–Mills equations. Phys. Lett., B 59, 85–87.
[26] Bender, C. M. 1978. Perturbation Theory in large order. Adv. Math., 30, 250–267.
[27] Bender, C. M. and Caswell, W. E. 1978. Asymptotic graph counting techniques in ψ2N field theory. J. Math. Phys., 19, 2579–2586.
[28] Bender, C. M. and Orszag, S. A. 1999. Advanced Mathematical Methods for Scientists and Engineers. Springer-Verlag.
[29] Bender, C. M. and Wu, T. T. 1969. Anharmonic oscillator. Phys. Rev., 184, 1231–1260.
[30] Bender, C.M. and Wu, T. T. 1973. Anharmonic oscillator. 2: a study of perturbation theory in large order. Phys. Rev., D 7, 1620–1636.
[31] Bender, C. M. and Wu, T. T. 1976. Statistical analysis of Feynman diagrams. Phys. Rev. Lett., 37, 117–120.
[32] Beneke, M. 1999. Renormalons. Phys. Rep., 317, 1–142.
[33] Berg, B. and Lüscher, M. 1979. Computation of quantum fluctuations around multiinstanton fields from exact Green's functions: the ℂℙN−1 case. Commun. Math. Phys., 69, 57–80.
[34] Bernard, C. W. 1979. Gauge zero modes, instanton determinants, and QCD calculations. Phys. Rev., D 19, 3013–3019.
[35] Bessis, D., Itzykson, C. and Zuber, J. B. 1980. Quantum field theory techniques in graphical enumeration. Adv. Appl. Math., 1, 109–157.
[36] Bogomolny, E. B. and Fateev, V. A. 1977. Large order calculations in gauge theories. Phys. Lett., B 71, 93–96.
[37] Brézin, E. and Wadia, S. (eds.) 1991. The Large N Expansion in Quantum Field Theory and Statistical Physics. World Scientific.
[38] Brézin, E., Le Guillou, J. C. and Zinn-Justin, J. 1977. Perturbation theory at large order. 1. The ψ2N interaction. Phys. Rev., D 15, 1544–1557.
[39] Brézin, E., Le Guillou, J. C. and Zinn-Justin, J. 1977. Perturbation theory at large order. 2. Role of the vacuum instability. Phys. Rev., D 15, 1558–1564.
[40] Brézin, E., Itzykson, C., Parisi, G. and Zuber, J. B. 1978. Planar diagrams. Commun. Math. Phys., 59, 35–51.
[41] Brower, R. C., Spence, W. L. and Weis, J. H. 1979. Bound states and asymptotic limits for QCD in two-dimensions. Phys. Rev., D 19, 3024–3049.
[42] Caliceti, E., Graffi, S. and Maioli, M. 1980. Perturbation theory of odd anharmonic oscillators. Commun. Math. Phys., 75, 51–66.
[43] Caliceti, E., Meyer-Hermann, M., Ribeca, P., Surzhykov, A. and Jentschura, U. D. 2007. From useful algorithms for slowly convergent series to physical predictions based on divergent perturbative expansions. Phys. Rep., 446, 1–96.
[44] Callan, C. G. and Coleman, S. R. 1977. The fate of the false vacuum. 2. First quantum corrections. Phys. Rev., D 16, 1762–1768.
[45] Callan, C. G., Dashen, R. F. and Gross, D. J. 1976. The structure of the gauge theory vacuum.Phys. Lett., B 63, 334–340.
[46] Chadha, S., Di Vecchia, P., D'Adda, A. and Nicodemi, F. 1977. Zeta function regularization of the quantum fluctuations around the Yang–Mills pseudoparticle. Phys. Lett., B 72, 103–108.
[47] Christos, G. A. 1984. Chiral symmetry and the U(1) problem. Phys. Rep., 116, 251–336.
[48] Cicuta, G. M. 1982. Topological expansion for SO(N) and Sp(2n) gauge theories. Lett. Nuovo Cimento, 35 87–92.
[49] Coleman, S. R. 1977. The fate of the false vacuum. 1. Semiclassical theory. Phys. Rev., D 15, 2929–2936.
[50] Coleman, S. 1985. Aspects of Symmetry. Cambridge University Press.
[51] Coleman, S. R. and De Luccia, F. 1980. Gravitational effects on and of vacuum decay. Phys. Rev., D 21, 3305–3315.
[52] Coleman, S. R., Glaser, V. and Martin, A. 1978. Action minima among solutions to a class of Euclidean scalar field equations. Commun. Math. Phys., 58, 211–221.
[53] Collins, J. C. and Soper, D. E. 1978. Large order expansion in perturbation theory. Ann. Phys., 112, 209–234.
[54] Cooper, F. and Freedman, B. 1983. Aspects of supersymmetric quantum mechanics. Ann. Phys., 146, 262–288.
[55] Cooper, F., Khare, A. and Sukhatme, U. 1995. Supersymmetry and quantum mechanics. Phys. Rep., 251, 267–385.
[56] Costin, O. 2009. Asymptotics and Borel Summability. Chapman-Hall.
[57] Cvitanovic, P. 1976. Group theory for Feynman diagrams in non-Abelian gauge theories. Phys. Rev., D 14, 1536–1553.
[58] Cvitanovic, P. 2008. Group Theory: Birdtracks, Lie's and Exceptional groups. Princeton University Press.
[59] Cvitanovic, P. et al. 2011. Chaos: Classical and Quantum. Gone with the Wind Press. http://chaosbook.org/.
[60] D'Adda, A., Di Vecchia, P. and Luscher, M. 1978. A 1/N expandable series of nonlinear sigma models with instantons. Nucl. Phys., B 146, 63–76.
[61] D'Adda, A., Di Vecchia, P. and Luscher, M. 1979. Confinement and chiral symmetry breaking in ℂℙn−1 models with quarks. Nucl. Phys., B 152, 125–144.
[62] Daniel, M. and Viallet, C. M. 1980. The geometrical setting of gauge theories of the Yang–Mills type. Rev. Mod. Phys., 52, 175–197.
[63] Dashen, R. F., Hasslacher, B. and Neveu, A. 1974. Nonperturbative methods and extended hadron models in field theory. 1. Semiclassical functional methods. Phys. Rev., D 10, 4114–4129.
[64] David, F. 1991. Phases of the large N matrix model and non-perturbative effects in 2-D gravity. Nucl. Phys., B 348, 507–524.
[65] David, F. 1993. Non-perturbative effects in matrix models and vacua of twodimensional gravity. Phys. Lett., B 302, 403–410.
[66] Delabaere, E., Dillinger, H. and Pham, F. 1997. Exact semiclassical expansions for one-dimensional quantum oscillators. J. Math. Phys., 38, 6126–6184.
[67] Del Debbio, L., Giusti, L. and Pica, C. 2005. Topological susceptibility in the SU(3) gauge theory. Phys. Rev. Lett., 94, 032003.
[68] Di Francesco, P. 2006. 2D quantum gravity, matrix models and graph combinatorics. In: Applications of Random Matrices in Physics, E., Brézin et al. (eds.), pp. 33–88. Springer-Verlag.
[69] Di Francesco, P., Ginsparg, P. H. and Zinn-Justin, J. 1995. 2-D gravity and random matrices. Phys. Rep., 254, 1–133.
[70] Dingle, R. B. 1973. Asymptotic Expansions: their Derivation and Interpretation. Academic Press.
[71] Di Vecchia, P. 1979. An effective Lagrangian with no U(1) problem in ℂℙn−1 models and QCD. Phys. Lett., B 85, 357–360.
[72] Di Vecchia, P. and Veneziano, G. 1980. Chiral dynamics in the large n limit. Nucl. Phys., B 171, 253–272.
[73] Donaldson, S. K. and Kronheimer, P. B. 1990. The Geometry of Four-Manifolds. Oxford University Press.
[74] Donoghue, J. F., Golwich, E. and Holstein, B. R. 1994. Dynamics of the Standard Model. Cambridge University Press.
[75] Dorey, N., Hollowood, T. J., Khoze, V. V. and Mattis, M. P. 2002. The calculus of many instantons. Phys. Rep., 371, 231–459.
[76] Dorigoni, D. 2014. An introduction to resurgence, trans-series and alien calculus. arXiv:1411.3585 [hep-th].
[77] Dunne, G. V. 2002. Perturbative–nonperturbative connection in quantum mechanics and field theory. In: Continuous Advances in QCD, K. A., Olive et al. (eds.), pp. 478– 505. World Scientific.
[78] Dunne, G. V. 2008. Functional determinants in quantum field theory. J. Phys. A: Math. Theor., 41, 304006.
[79] Dunne, G. V. and Min, H. 2005. Beyond the thin-wall approximation: precise numerical computation of prefactors in false vacuum decay. Phys. Rev., D 72, 125004.
[80] Dunne, G. V. and Unsal, M. 2012. Resurgence and trans-series in quantum field theory: the ℂℙN−1 model. JHEP, 1211, 170.
[81] Dunne, G. V. and Unsal, M. 2014. Uniform WKB, multi-instantons, and resurgent trans-series. Phys. Rev., D 89, 105009.
[82] Dyson, F. J. 1952. Divergence of perturbation theory in quantum electrodynamics. Phys. Rev., 85, 631–632.
[83] Einhorn, M. B. and Wudka, J. 2003. On the Vafa–Witten theorem on spontaneous breaking of parity. Phys. Rev., D 67, 045004.
[84] Eynard, B. 2004. Topological expansion for the 1-Hermitian matrix model correlation functions. JHEP, 0411, 031.
[85] Eynard, B. and Orantin, N. 2007. Invariants of algebraic curves and topological expansion. Commun. Num. Theor. Phys., 1, 347–452.
[86] Feynman, R. P. 1998. Statistical Mechanics. Westview Press.
[87] Forrester, P. J. 2010. Log-Gases and Random Matrices. Princeton University Press.
[88] Forrester, P. J. and Warnaar, S. O. 2008. The importance of the Selberg integral. Bull. Am. Math. Soc. (N.S.), 45, 489–534.
[89] Frishman, Y. and Sonnenschein, J. 2010. Non-Perturbative Field Theory. Cambridge University Press.
[90] Fujikawa, K. 1980. Path integral for gauge theories with fermions. Phys. Rev., D 21, 2848–2858.
[91] Fujikawa, K. and Suzuki, H. 2004. Path Integrals and Quantum Anomalies. Oxford University Press.
[92] Gasser, J. and Leutwyler, H. 1984. Chiral perturbation theory to one loop. Ann. Phys., 158, 142–210.
[93] Gibbons, G. W. and Hawking, S. W. 1977. Action integrals and partition functions in quantum gravity. Phys. Rev., D 15, 2752–2756.
[94] Ginsparg, P. H. and Moore, G. W. 1993. Lectures on 2-D gravity and 2-D string theory. hep-th/9304011.
[95] Ginsparg, P. H. and Zinn-Justin, J. 1990. 2-d gravity + 1-d matter. Phys. Lett., B 240, 333–340.
[96] Giusti, L., Rossi, G. C. and Veneziano, G. 2002. The UA(1) problem on the lattice with Ginsparg–Wilson fermions. Nucl. Phys., B 628, 234–252.
[97] Giusti, L., Rossi, G. C. and Testa, M. 2004. Topological susceptibility in full QCD with Ginsparg–Wilson fermions. Phys. Lett., B 587, 157–166.
[98] Giusti, L., Petrarca, S. and Taglienti, B. 2007. Theta dependence of the vacuum energy in the SU(3) gauge theory from the lattice. Phys. Rev., D 76, 094510.
[99] Gopakumar, R. 1996. The master field revisited. Nucl. Phys. Proc. Suppl., 45B, 244–250.
[100] Graffi, S., Grecchi, V. and Simon, B. 1970. Borel summability: application to the anharmonic oscillator. Phys. Lett., B 32, 631–634.
[101] Gross, D. J. and Matytsin, A. 1994. Instanton induced large N phase transitions in two-dimensional and four-dimensional QCD. Nucl. Phys., B 429, 50–74.
[102] Gross, D. J. and Witten, E. 1980. Possible third order phase transition in the large N lattice gauge theory. Phys. Rev., D 21, 446–453.
[103] Gross, D. J., Pisarski, R. D. and Yaffe, L. G. 1981. QCD and instantons at finite temperature. Rev. Mod. Phys., 53, 43–80.
[104] Gross, D. J., Perry, M. J. and Yaffe, L. G. 1982. Instability of flat space at finite temperature. Phys. Rev., D 25, 330–355.
[105] Grunberg, G. 1994. Perturbation theory and condensates. Phys. Lett., B 325, 441–448.
[106] Herbst, I. W. and Simon, B. 1978. Some remarkable examples in eigenvalue perturbation theory. Phys. Lett., B 78, 304–306.
[107] Herrera-Siklody, P., Latorre, J. I., Pascual, P. and Taron, J. 1997. Chiral effective Lagrangian in the large N(c) limit: the nonet case. Nucl. Phys., B 497, 345–386.
[108] Huang, S., Negele, J. W. and Polonyi, J. 1988. Meson structure in QCD in twodimensions. Nucl. Phys., B 307, 669–704.
[109] Jack, I. and Osborn, H. 1984. Background field calculations in curved space-time. 1. General formalism and application to scalar fields. Nucl. Phys., B 234, 331–364.
[110] Jackiw, R. 1977. Quantum meaning of classical field theory. Rev. Mod. Phys., 49, 681–706.
[111] Jackiw, R. 1985. Topological investigations of quantized gauge theories. In: Current Algebra and Anomalies, S. B., Treiman, R., Jackiw, B., Zumino and E, Witten (eds.), pp. 240–360. World Scientific.
[112] Jackiw, R. and Rebbi, C. 1976. Vacuum periodicity in a Yang–Mills quantum theory. Phys. Rev. Lett., 37, 172–175.
[113] Jafarizadeh, M. A. and Fakhri, H. 1997. Calculation of the determinant of shape invariant operators. Phys. Lett., A 230, 157–163.
[114] Jentschura, U. D. and Zinn-Justin, J. 2011. Multi-instantons and exact results. IV: Path integral formalism. Ann. Phys., 326, 2186–2242.
[115] Jentschura, U. D., Surzhykov, A. and Zinn-Justin, J. 2010. Multi-instantons and exact results. III: Unification of even and odd anharmonic oscillators. Ann. Phys., 325, 1135–1172.
[116] Jurkiewicz, J. and Zalewski, K. 1983. Vacuum structure of the U(N → infinity) gauge theory on a two-dimensional lattice for a broad class of variant actions. Nucl. Phys., B 220, 167–184.
[117] Kalashnikova, Y. S. and Nefediev, A. V. 2002. Two-dimensional QCD in the Coulomb gauge. Phys. Usp., 45, 347–368.
[118] Kalashnikova, Y. S., Nefediev, A. V. and Volodin, A. V. 2000. Hamiltonian approach to the bound state problem in QCD2. Phys. Atom. Nucl., 63, 1623–1628.
[119] Kaul, R. K. and Rajaraman, R. 1983. Soliton energies in supersymmetric theories. Phys. Lett., B 131, 357–361.
[120] Konishi, K. and Paffuti, G. 2009. Quantum Mechanics. A New Introduction. Oxford University Press.
[121] Koplik, J., Neveu, A. and Nussinov, S. 1977. Some aspects of the planar perturbation series. Nucl. Phys., B 123, 109–131.
[122] Le Guillou, J. C. and Zinn-Justin, J. (eds.) 1990. Large Order Behavior of Perturbation Theory. North-Holland.
[123] Lenz, F., Thies, M., Yazaki, K. and Levit, S. 1991. Hamiltonian formulation of two-dimensional gauge theories on the light cone. Ann. Phys., 208, 1–89.
[124] Li, M., Wilets, M. and Birse, M. C. 1987. QCD In two-dimensions in the axial gauge. J. Phys., G 13, 915–923.
[125] Lipatov, L. N. 1977. Divergence of the perturbation theory series and the quasiclassical theory. Sov. Phys. JETP, 45, 216–223.
[126] Lucini, B. and Panero, M. 2013. SU(N) gauge theories at large N. Phys. Rep., 526, 93–163.
[127] Lüscher, M. 1982. Dimensional regularization in the presence of large background fields. Ann. Phys., 142, 359–392.
[128] Lüscher, M. 1982. A semiclassical formula for the topological susceptibility in a finite space-time volume. Nucl. Phys., B 205, 483–503.
[129] Lüscher, M. 2004. Topological effects in QCD and the problem of short-distance singularities. Phys. Lett., B 593, 296–301.
[130] Lüscher, M. 2010. Properties and uses of the Wilson flow in lattice QCD. JHEP, 1008, 071.
[131] Lüscher, M. and Palombi, F. 2010. Universality of the topological susceptibility in the SU(3) gauge theory. JHEP, 1009, 110.
[132] Majumdar, S. N. and Schehr, G. 2014. Top eigenvalue of a random matrix: large deviations and third order phase transitions. J. Stat. Mech., P01012.
[133] Majumdar, S. N. and Vergassola, M. 2009. Large deviations of the maximum eigenvalue for Wishart and Gaussian random matrices. Phys. Rev. Lett., 102, 060601.
[134] Manohar, A. V. 1998. Large N QCD. arXiv:hep-ph/9802419.
[135] Mariño, M. 2004. Les Houches lectures on matrix models and topological strings. hep-th/0410165.
[136] Mariño, M. 2008. Nonperturbative effects and nonperturbative definitions in matrix models and topological strings. JHEP, 0812, 114.
[137] Mariño, M. 2014. Lectures on non-perturbative effects in large N gauge theories, matrix models and strings. Fortschr. Phys., 62, 455–540.
[138] Mariño, M. and Putrov, P. 2009. Multi-instantons in large N matrix quantum mechanics. arXiv:0911.3076 [hep-th].
[139] Mariño, M., Schiappa, R. and Weiss, M. 2008. Non-perturbative effects and the large-order behavior of matrix models and topological strings. Commun. Num. Theor. Phys., 2, 349–419.
[140] McKane, A. J. and Tarlie, M. B. 1995. Regularisation of functional determinants using boundary perturbations. J. Phys., A 28, 6931–6942.
[141] Meggiolaro, E. 1998. The topological susceptibility of QCD: from Minkowskian to Euclidean theory. Phys. Rev., D 58, 085002.
[142] Mehta, M. L. 2004. Random Matrices. Elsevier.
[143] Miller, P. 2006. Applied Asymptotic Analysis. American Mathematical Society.
[144] Münster, G. 1982. The 1/N expansion and instantons in ℂℙN−1 models on a sphere. Phys. Lett., B 118, 380–384.
[145] Münster, G. 1983. A study of ℂℙN−1 models on the sphere within the 1/N expansion. Nucl. Phys., B 218, 1–31.
[146] Negele, J. W. 1982. The mean-field theory of nuclear structure and dynamics. Rev. Mod. Phys., 54, 913–1015.
[147] Negele, J. W. and Orland, H. 1998. Quantum Many-Particle Systems. Westview Press.
[148] Nepomechie, R. I. 1985. Calculating heat kernels. Phys. Rev., D 31, 3291–3292.
[149] Neuberger, H. 1980. Instantons as a bridgehead at N = infinity. Phys. Lett., B 94, 199–202.
[150] Neuberger, H. 1981. Nonperturbative contributions in models with a nonanalytic behavior at infinite N. Nucl. Phys., B 179, 253–282.
[151] Osborn, H. 1981. Semiclassical functional integrals for selfdual gauge fields. Ann. Phys., 135, 373–415.
[152] Parisi, G. 1978. Singularities of the borel transform in renormalizable theories. Phys. Lett., B 76, 65–66.
[153] Perelomov, A. M. 1987. Chiral models: geometrical aspects. Phys. Rep., 146, 135–213.
[154] Peskin, M. E. and Schroeder, D. V. 1995. An Introduction to Quantum Field Theory. Addison-Wesley.
[155] Polyakov, A. M. 1977. Quark confinement and topology of gauge groups. Nucl. Phys., B 120, 429–458.
[156] Polyakov, A. M. 1987. Gauge Fields and Strings. Harwood Academic Publishers.
[157] Rajaraman, R. 1982. Solitons and Instantons. North-Holland.
[158] Ramond, P. 2001. Field Theory. A Modern Primer, second edition. Westview Press.
[159] Salomonson, P. and van Holten, J. W. 1982. Fermionic coordinates and supersymmetry in quantum mechanics. Nucl. Phys., B 196, 509–531.
[160] Schafer, T. and Shuryak, E. V. 1998. Instantons in QCD. Rev. Mod. Phys., 70, 323–426.
[161] Schwab, P. 1982. Semiclassical approximation for the topological susceptibility in ℂℙN−1 models on a sphere. Phys. Lett., B 118, 373–379.
[162] Schwab, P. 1983. Two instanton contribution to the topological susceptibility in ℂℙN−1 models on a sphere. Phys. Lett., B 126, 241–246.
[163] Schwarz, A. S. 1979. Instantons and fermions in the field of instanton. Commun. Math. Phys., 64, 233–268.
[164] Seara, T. M. and Sauzin, D. 2003. Ressumació de Borel i teoria de la ressurgència. Bull. Soc. Catlana Mat., 18, 131–153.
[165] Seiler, E. 2002. Some more remarks on the Witten–Veneziano formula for the etaprime mass. Phys. Lett., B 525, 355–359.
[166] Shenker, S. H. 1992. The strength of nonperturbative effects in string theory. In: Random Surfaces and Quantum Gravity, O., Álvarez, E., Marinari and P., Windey (eds.), pp. 191–200. Plenum Press.
[167] Shifman, M. 2012. Advanced Topics in Quantum Field Theory. Cambridge University Press,
[168] Shore, G. M. 1979. Dimensional regularization and instantons. Ann. Phys., 122, 321–372.
[169] Simon, B. 1982. Large orders and summability of eigenvalue perturbation theory: a mathematical overview. Int. J. Quant. Chem., 21, 3–25.
[170] Stone, M. 1977. Semiclassical methods for unstable states. Phys. Lett., B 67, 186–188.
[171] Stone, M. and Reeve, J. 1978. Late terms in the asymptotic expansion for the energy levels of a periodic potential. Phys. Rev., D 18, 4746–4751.
[172] Takhtajan, L. 2008. Quantum Mechanics for Mathematicians. American Mathematical Society.
[173] 't Hooft, G. 1974. A planar diagram theory for strong interactions. Nucl. Phys., B 72, 461–473.
[174] 't Hooft, G. 1974. A two-dimensional model for mesons. Nucl. Phys., B 75, 461–470.
[175] 't Hooft, G. 1976. Computation of the quantum effects due to a four-dimensional pseudoparticle. Phys. Rev., D 14, 3432–3450.
[176] Tong, D. 2005. TASI lectures on solitons: instantons, monopoles, vortices and kinks. hep-th/0509216.
[177] Vafa, C. and Witten, E. 1984. Parity conservation in QCD. Phys. Rev. Lett., 53, 535–536.
[178] Vandoren, S. and van Nieuwenhuizen, P. 2008. Lectures on instantons. arXiv:0802.1862 [hep-th].
[179] Vassilevich, D. V. 2003. Heat kernel expansion: user's manual. Phys. Rep., 388, 279–360.
[180] Veneziano, G. 1979. U(1) without instantons. Nucl. Phys., B 159, 213–224.
[181] Vicari, E. 1999. The Euclidean two point correlation function of the topological charge density. Nucl. Phys., B 554, 301–312.
[182] Vicari, E. and Panagopoulos, H. 2009. Theta dependence of SU(N) gauge theories in the presence of a topological term. Phys. Rep., 470, 93–150.
[183] Wadia, S. R. 1979. A study of U(N) lattice gauge theory in 2-dimensions. EFI-79/44-CHICAGO, arXiv:1212.2906 [hep-th].
[184] Wadia, S. R. 1980. N = infinity phase transition in a class of exactly soluble model lattice gauge theories. Phys. Lett., B 93, 403–410.
[185] Weinberg, S. 1975. The U(1) problem. Phys. Rev., D 11, 3583–3593.
[186] Weinberg, S. 1996. The Quantum Theory of Fields. Volume II: Modern Applications. Cambridge University Press.
[187] Witten, E. 1979. Instantons, the quark model, and the 1/N expansion. Nucl. Phys., B 149, 285–320.
[188] Witten, E. 1979. Current algebra theorems for the U(1) goldstone boson. Nucl. Phys., B 156, 269–283.
[189] Witten, E. 1979. Baryons in the 1/N expansion. Nucl. Phys., B 160, 57–115.
[190] Witten, E. 1980. The 1/N expansion in atomic and particle physics. In: Recent Developments in Gauge Theories, G., 't Hooft et al. (eds.), pp. 403–419. Plenum Press.
[191] Witten, E. 1980. Quarks, atoms, and the 1/N expansion. Phys. Today, 33, 38–43.
[192] Witten, E. 1980. Large N chiral dynamics. Ann. Phys., 128, 363–375.
[193] Witten, E. 1981. Dynamical breaking of supersymmetry. Nucl. Phys., B 188, 513–554.
[194] Witten, E. 1982. Instability of the Kaluza–Klein vacuum. Nucl. Phys., B 195, 481–492.
[195] Witten, E. 1998. Theta dependence in the large N limit of four-dimensional gauge theories. Phys. Rev. Lett., 81, 2862–2865.
[196] Yaris, R., Bendler, J., Lovett, R., Bender, C. M. and Fedders, P. A. 1978. Resonance calculations for arbitrary potentials. Phys. Rev., A 18, 1816–1825.
[197] Ynduráin, F. J. 2006. The Theory of Quark and Gluon Interactions. Springer-Verlag.
[198] Zinn-Justin, J. 1983. Multi-instanton contributions in quantum mechanics. 2. Nucl. Phys., B 218, 333–348.
[199] Zinn-Justin, J. 2002. Quantum Field Theory and Critical Phenomena. Oxford University Press.
[200] Zinn-Justin, J. and Jentschura, U. D. 2004. Multi-instantons and exact results I: conjectures, WKB expansions, and instanton interactions. Ann. Phys., 313, 197–267.
[201] Zinn-Justin, J. and Jentschura, U. D. 2004. Multi-instantons and exact results II: specific cases, higher-order effects, and numerical calculations. Ann. Phys., 313, 269–325.