Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Efficacy of Residual Methods for Passive Image Forensics Using Four Filtered Residue CNN

  • Original Research
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

Digital images can be manipulated easily due to the availability of various editing tools. These editing tools are employed to preserve the original content of an image. However, editing tools also leave the traces of the manipulations on an image. Many different detectors have been proposed to identify these traces, but these detectors are only capable of detecting specific manipulation types. In addition, some general purpose detectors are also available, but their performance is best suited for uncompressed images of large resolution. In this article, a general purpose, Four filtered residue–convolutional neural network (FFR–CNN) is proposed to detect multiple manipulations, mainly for low resolution and JPEG compressed images. The volumetric input for three dimensional FFR–CNN is constructed by stacking along the depth the four residuals obtained using average, Gaussian, Laplacian and median filtering. The four residuals reveal various manipulations in terms of background and texture. Thus, the quality of the four residuals is combined to enhance the performance of the proposed network. The performance of the FFR–CNN is evaluated for the detection of different manipulations (Gaussian blurring, additive white Gaussian Noise, median filtering, re-scaling and rotation) against the state-of-the art detectors. The generalization ability and high detection accuracy in the presence of anti-forensics operation highlight the efficacy of the proposed FFR–CNN. Furthermore, constrained time complexity supports the effectiveness of FFR–CNN for real time applications. For conducting all the experiments, the training–testing ratio is 85:15, e.g., 85% data are used for training and remaining 15% data are used for testing purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Stamm M, Wu M, Liu KJR. Information forensics: an overview of the first decade. IEEE Access. 2013;1:167. https://doi.org/10.1109/ACCESS.2013.2260814.

    Article  Google Scholar 

  2. Ran L, Zhang Y, Zhang Q, Yang T. Convolutional neural network-based robot navigation using uncalibrated spherical images. Sensors. 2017;17:1341. https://doi.org/10.3390/s17061341.

    Article  Google Scholar 

  3. Cao G, Zhao Y, Ni R, Li X. Contrast enhancement-based forensics in digital images. IEEE Trans Inf Forensics Secur. 2014;9:515.

    Article  Google Scholar 

  4. Yang P, Ni R, Zhao Y, Cao G, Wu H, Zhao W. Robust contrast enhancement forensics using convolutional neural networks. 2018. arXiv:abs/1803.04749 [CoRR]].

  5. Kirchner M, Fridrich J. Media Forensics and Security II, vol. 7541. In: Memon ND, Dittmann J, Alattar AMEJD III. editors. International Society for Optics and Photonics (SPIE, 2010), vol. 7541, pp. 371–382. https://doi.org/10.1117/12.839100.

  6. Yuan H. Blind forensics of median filtering in digital images. IEEE Trans Inf Forensics Secur. 2011;6(4):1335. https://doi.org/10.1109/TIFS.2011.2161761.

    Article  Google Scholar 

  7. Kang X, Stamm MC, Peng A, Liu KJR. Robust median filtering forensics using an autoregressive model. IEEE Trans Inf Forensics Secur. 2013;8(9):1456. https://doi.org/10.1109/TIFS.2013.2273394.

    Article  Google Scholar 

  8. Gupta A, Singhal D. Analytical global median filtering forensics based on moment histograms. ACM Trans Multimed Comput Commun Appl. 2018 (44:1). https://doi.org/10.1145/3176650

    Article  Google Scholar 

  9. Wang DP, Gao T, Yang F. A forensic algorithm against median filtering based on coefficients of image blocks in frequency domain. Multimed Tools Appl. 2018. https://doi.org/10.1007/s11042-018-5651-z.

    Article  Google Scholar 

  10. Wang Q, Zhang R. Double jpeg compression forensics based on a convolutional neural network. EURASIP J Inf Secur. 2016. https://doi.org/10.1186/s13635-016-0047-y.

    Article  Google Scholar 

  11. Popescu A, Farid H. Exposing digital forgeries by detecting traces of resampling. Trans Sig Proc. 2005;53(2):758–67.

    Article  MathSciNet  MATH  Google Scholar 

  12. Kirchner M, Bohme R. Hiding traces of resampling in digital images. IEEE Trans Inf Forensics Secur. 2008;3(4):582. https://doi.org/10.1109/TIFS.2008.2008214.

    Article  Google Scholar 

  13. Feng X, Cox IJ, Doërr GJ. Normalized energy density-based forensic detection of resampled images. IEEE Trans Multimed. 2012;14:536.

    Article  Google Scholar 

  14. Fan W, Wang K, Cayre F. 2015; p. 1–6. https://doi.org/10.1109/WIFS.2015.7368606.

  15. Qiu X, Li H, Luo W, Huang J. In: Proceedings of the 2nd ACM Workshop on Information Hiding and Multimedia Security (Association for Computing Machinery, New York, NY, USA, 2014), IH & amp;MMSec ’14, pp. 165-170. https://doi.org/10.1145/2600918.2600941.

  16. Li H, Luo W, Qiu X, Huang J. Identification of various image operations using residual-based features. IEEE Trans Circ Syst Video Technol. 2016. https://doi.org/10.1109/TCSVT.2016.2599849.

    Article  Google Scholar 

  17. Bayar B, Stamm MC. Constrained convolutional neural networks: a new approach towards general purpose image manipulation detection. IEEE Trans Inf Forensics Secur. 2018;13(11):2691. https://doi.org/10.1109/TIFS.2018.2825953.

    Article  Google Scholar 

  18. Chen B, Li H, Luo W. Image processing operations identification via convolutional neural network (2017)

  19. Tang H, Ni R, Zhao Y, Li X. Median filtering detection of small-size image based on cnn. J Vis Commun Image Represent. 2018. https://doi.org/10.1016/j.jvcir.2018.01.011.

    Article  Google Scholar 

  20. Cozzolino D, Poggi G, Verdoliva L. In: Proceedings of the 5th ACM Workshop on Information Hiding and Multimedia Security (Association for Computing Machinery, New York, NY, USA, 2017), IH & amp;MMSec ’17, pp. 159–164. https://doi.org/10.1145/3082031.3083247.

  21. Pevný T, Bas P, Fridrich J. In: Proceedings of the 11th ACM Workshop on Multimedia and Security (Association for Computing Machinery, New York, NY, USA, 2009), MM & amp;Sec ’09, pp. 75–84. https://doi.org/10.1145/1597817.1597831.

  22. Fridrich J, Kodovsky J. Rich models for steganalysis of digital images. IEEE Trans Inf Forensics Secur. 2012;7(3):868.

    Article  Google Scholar 

  23. Lee SJ, Chen T, Yu L, Lai CH. Image classification based on the boost convolutional neural network. IEEE Access. 2018. https://doi.org/10.1109/ACCESS.2018.2796722.

    Article  Google Scholar 

  24. Toshev A, Szegedy C. In: Proceedings of the 2014 IEEE Conference on computer vision and pattern recognition (IEEE Computer Society, USA, 2014), CVPR ’14, pp. 1653–1660. https://doi.org/10.1109/CVPR.2014.214.

  25. Chen J, Kang X, Liu Y, Wang ZJ. Median filtering forensics based on convolutional neural networks. IEEE Signal Process Lett. 2015;22(11):1849. https://doi.org/10.1109/LSP.2015.2438008.

    Article  Google Scholar 

  26. Bin Y, Li Z, Zhang T. A real-time image forensics scheme based on multi-domain learning. J Real-Time Image Process. 2020;1:29. https://doi.org/10.1007/s11554-019-00893-8.

    Article  Google Scholar 

  27. Yu L, Zhang Y, Zhang L, Wu F. Robust median filtering forensics by cnn-based multiple residuals learning. IEEE Access. 2019. https://doi.org/10.1109/ACCESS.2019.2932810.

    Article  Google Scholar 

  28. Yang J, Ren H, Zhu G, Huang J, Shi YQ. Detecting median filtering via two-dimensional ar models of multiple filtered residuals. Multimed Tools Appl. 2018;77(7):7931. https://doi.org/10.1007/s11042-017-4691-0.10.1007/s11042-017-4691-0.

    Article  Google Scholar 

  29. Peng A, Luo S, Zeng H, Wu Y. Median filtering forensics using multiple models in residual domain. IEEE Access. 2019;7:28525. https://doi.org/10.1109/ACCESS.2019.2897761.

    Article  Google Scholar 

  30. Maas AL, Hannun AY, Ng AY. Rectifier nonlinearities improve neural network acoustic models. In: Proceedings of the ICML workshop on deep learning for audio, speech and language processing (2013).

  31. Krishna H, Vuppala A, 2017:1–5. https://doi.org/10.1109/NCC.2017.8077043.

  32. Krizhevsky A, Sutskever I, Hinton GE. In: Pereira F, Burges CJC, Bottou L, Weinberger KQ. editors. Advances in neural information processing systems 25, ed. Curran Associates, Inc.; 2012, pp. 1097–1105. http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf. Accessed June 2019.

  33. Kingma DP, Ba J. Adam: a method for stochastic optimization. 2014.

  34. Schaefer G, Stich M. UCID: an uncompressed color image database. In: Yeung MM, Lienhart RW, Li CS (eds) Storage and retrieval methods and applications for multimedia 2004,  International Society for Optics and Photonics (SPIE, 2003), vol. 5307, pp. 472 –480. https://doi.org/10.1117/12.525375.

  35. Dang-Nguyen DT, Pasquini C, Conotter V, Boato G. In: Proceedings of the 6th ACM Multimedia Systems Conference (ACM, New York, NY, USA, 2015), MMSys ’15, pp. 219–224. https://doi.org/10.1145/2713168.2713194.

  36. Bas P, Filler T, Pevný T. Break our steganographic system: the ins and outs of organizing boss. In: Filler T, Pevný T, Craver S, Ker A, (eds). Information hiding. Springer, Berlin; 2011, pp. 59–70. https://doi.org/10.1007/978-3-642-24178-9_5

  37. Bas P, Furon T. In: 2015 IEEE 5th International Conference on consumer electronics—Berlin (ICCE-Berlin). 2007. http://bows2.ec-lille.fr/. Accessed May 2020.

  38. Fan W, Wang K, Cayre F, Xiong Z. Median filtered image quality enhancement and anti-forensics via variational deconvolution. IEEE Trans Inf Forensics Secur. 2015;10(5):1076. https://doi.org/10.1109/TIFS.2015.2398362.

    Article  Google Scholar 

  39. Database I. Ieee ifs-tc image forensics challenge. 2013. http://ifc.recod.ic.unicamp.br/fc.website/index.py?sec=5. Accessed Jan 2020.

  40. He K, Sun J. In: 2015 IEEE Conference on computer vision and pattern recognition (CVPR) 2015; pp. 5353–5360. https://doi.org/10.1109/CVPR.2015.7299173.

Download references

Funding

The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhinav Gupta.

Ethics declarations

Conflicts of Interests/Competing Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agarwal, A., Gupta, A. Efficacy of Residual Methods for Passive Image Forensics Using Four Filtered Residue CNN. SN COMPUT. SCI. 3, 491 (2022). https://doi.org/10.1007/s42979-022-01396-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-022-01396-3

Keywords

Navigation