Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Multiple Manipulation Detection in Images Using Frequency Domain Features in 3D-CNN

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In digital era, image can be easily forged by multiple manipulations using advance editing tools, such that truthfulness of that image cannot be identified by human eye. Many approaches have been proposed for the detection of these forged images. However, the performance of these approaches is quite better for large resolution and uncompressed images, whereas they fail for small-sized highly compressed images. To address this issue, a novel DCT-3DCNN architecture is proposed for multiple manipulation detection. The proposed DCT-3DCNN is constructed by stacking the DCTs of four residuals (Average filtering residuals, Gaussian filtering residuals, Laplacian filtering residuals and median filtering residuals) along depth-wise. The four DCTs are more capable to extract the manipulations traces in an image. These traces are fed into 3D-CNN to learn the low to high level features of multiple manipulations. Thus, the features are combined to classify the forged and pristine images. The performance of the proposed DCT-3DCNN is supported by exhaustive experiments for binary classification and multi- class classifications. Experiments are conducted on five (UCID, RAISE, BOSSBase, BOWS2 and NRCS) databases. The robustness of the proposed network is also evaluated for the detection of bilateral filtering on images. For binary classification, the improvement ratio (%) between the proposed (DCT-3DCNN) and state-of-the-art methods (MFR-CNN, RF-CNN) is 4–5%, while for bilateral filtering the improvement ratio (%) is 8% in comparison with the state-of-the art method RF-CNN. The proposed network achieves 14% improvement in detection accuracy for multi-class classification as compared to the RF-CNN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Sharma, V.S.; Nagwanshi, K.K.; Sinha, G.R.: Classification of defects in photonic bandgap crystal using machine learning under microsoft azureml environment. Multimed. Tools Appl. 81(15), 21887–21902 (2022). https://doi.org/10.1007/s11042-022-11899-z

    Article  Google Scholar 

  2. Nagwanshi, K.K.; Dubey, S.: Estimation of centroid, ensembles, anomaly and association for the uniqueness of human footprint features. Int. J. Intell. Eng. Inform. 8(2), 117–137 (2020). https://doi.org/10.1504/ijiei.2020.109096

    Article  Google Scholar 

  3. Qiu, X.; Li, H.; Luo, W.; Huang, J.: A universal image forensic strategy based on steganalytic model. In: Proceedings of the 2nd ACM Workshop on Information Hiding and Multimedia Security. IH & amp; MMSec ’14, pp. 165–170. Association for Computing Machinery, New York, NY, USA (2014). https://doi.org/10.1145/2600918.2600941

  4. Shi, Y.Q.; Sutthiwan, P.; Chen, L.: Textural features for steganalysis. In: Kirchner, M., Ghosal, D. (eds.) Information Hiding, pp. 63–77. Springer, Berlin (2013). https://doi.org/10.1007/978-3-642-36373-3_5

    Chapter  Google Scholar 

  5. Pevny, T.; Bas, P.; Fridrich, J.: Steganalysis by subtractive pixel adjacency matrix. IEEE Trans. Inf. Forensics Secur. 5(2), 215–224 (2010). https://doi.org/10.1109/TIFS.2010.2045842

    Article  Google Scholar 

  6. Fridrich, J.; Kodovsky, J.: Rich models for steganalysis of digital images. IEEE Trans. Inf. Forensics Secur. 7(3), 868–882 (2012). https://doi.org/10.1109/TIFS.2012.2190402

    Article  Google Scholar 

  7. Fan, W.; Wang, K.; Cayre, F.: General-purpose image forensics using patch likelihood under image statistical models, pp. 1–6 (2015). https://doi.org/10.1109/WIFS.2015.7368606

  8. Heenaye-Mamode Khan, M.; Gooda Sahib-Kaudeer, N.; Dayalen, M.; Mahomedaly, F.; Sinha, G.R.; Nagwanshi, K.K.; Taylor, A.; Loddo, A.: Multi-class skin problem classification using deep generative adversarial network (dgan). Intell. Neurosci. (2022). https://doi.org/10.1155/2022/1797471

    Article  Google Scholar 

  9. Lee, S.-J.; Chen, T.; Yu, L.; Lai, C.-H.: Image classification based on the boost convolutional neural network. IEEE Access (2018). https://doi.org/10.1109/ACCESS.2018.2796722

    Article  Google Scholar 

  10. Toshev, A.; Szegedy, C.: Deeppose: human pose estimation via deep neural networks. In: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. CVPR ’14, pp. 1653–1660. IEEE Computer Society, USA (2014). https://doi.org/10.1109/CVPR.2014.214

  11. Chen, J.; Kang, X.; Liu, Y.; Wang, Z.J.: Median filtering forensics based on convolutional neural networks. IEEE Signal Process. Lett. 22(11), 1849–1853 (2015). https://doi.org/10.1109/LSP.2015.2438008

    Article  Google Scholar 

  12. Cozzolino, D.; Poggi, G.; Verdoliva, L.: Recasting residual-based local descriptors as convolutional neural networks: an application to image forgery detection. In: Proceedings of the 5th ACM Workshop on Information Hiding and Multimedia Security. IH & MMSec ’17, pp. 159–164. Association for Computing Machinery, New York, NY, USA (2017). https://doi.org/10.1145/3082031.3083247

  13. Bayar, B.; Stamm, M.C.: Constrained convolutional neural networks: a new approach towards general purpose image manipulation detection. IEEE Trans. Inf. Forensics Secur. 13(11), 2691–2706 (2018). https://doi.org/10.1109/TIFS.2018.2825953

    Article  Google Scholar 

  14. Bin, Y.; Li, Z.; Zhang, T.: A real-time image forensics scheme based on multi-domain learning. J. Real-Time Image Process. 17, 29–40 (2020). https://doi.org/10.1007/s11554-019-00893-8

  15. Singhal, D.; Gupta, A.; Tripathi, A.; Kothari, R.: Cnn-based multiple manipulation detector using frequency domain features of image residuals. ACM Trans. Intell. Syst. Technol. 11, 1–26 (2020). https://doi.org/10.1145/3388634

    Article  Google Scholar 

  16. Al-Utaibi, K.A.; Abdulhussain, S.H.; Mahmmod, B.M.; Naser, M.A.; Alsabah, M.; Sait, S.M.: Reliable recurrence algorithm for high-order krawtchouk polynomials. Entropy (2021). https://doi.org/10.3390/e23091162

    Article  MathSciNet  Google Scholar 

  17. Abdulhussain, S.H.; Mahmmod, B.M.; Baker, T.; Al-Jumeily, D.: Fast and accurate computation of high-order Tchebichef polynomials. Concurr. Comput. Pract. Exp. (2022). https://doi.org/10.1002/cpe.7311

    Article  Google Scholar 

  18. Mahmmod, B.M.; Abdulhussain, S.H.; Suk, T.; Hussain, A.: Fast computation of Hahn polynomials for high order moments. IEEE Access 10, 48719–48732 (2022). https://doi.org/10.1109/access.2022.3170893

    Article  Google Scholar 

  19. Abdulhussain, S.H.; Ramli, A.R.; Hussain, A.J.; Mahmmod, B.M.; Jassim, W.A.: Orthogonal polynomial embedded image kernel. In: Proceedings of the International Conference on Information and Communication Technology. ICICT ’19, pp. 215–221. Association for Computing Machinery, New York, NY, USA (2019). https://doi.org/10.1145/3321289.3321310

  20. Li, H.; Luo, W.; Qiu, X.; Huang, J.: Identification of various image operations using residual-based features. IEEE Trans. Circuits Syst. Video Technol. 28(1), 31–45 (2018). https://doi.org/10.1109/TCSVT.2016.2599849

    Article  Google Scholar 

  21. Niu, Y.; Zhao, Y.; Ni, R.: Robust median filtering detection based on local difference descriptor. Signal Process. Image Commun. 53, 65–72 (2017). https://doi.org/10.1016/j.image.2017.01.008

    Article  Google Scholar 

  22. Kang, X.; Stamm, M.C.; Peng, A.; Liu, K.J.R.: Robust median filtering forensics using an autoregressive model. IEEE Trans. Inf. Forensics Secur. 8(9), 1456–1468 (2013). https://doi.org/10.1109/TIFS.2013.2273394

    Article  Google Scholar 

  23. Yuan, H.: Blind forensics of median filtering in digital images. IEEE Trans. Inf. Forensics Secur. 6(4), 1335–1345 (2011). https://doi.org/10.1109/TIFS.2011.2161761

    Article  Google Scholar 

  24. Chen, C.; Ni, J.; Huang, R.; Huang, J.: Blind median filtering detection using statistics in difference domain. In: Kirchner, M., Ghosal, D. (eds.) Information Hiding, pp. 1–15. Springer, Berlin (2013). https://doi.org/10.1007/978-3-642-36373-3_1

    Chapter  Google Scholar 

  25. Gupta, A.; Singhal, D.: Analytical global median filtering forensics based on moment histograms. ACM Trans. Multimed. Comput. Commun. Appl. 14(2), 44–14423 (2018). https://doi.org/10.1145/3176650

    Article  Google Scholar 

  26. Yang, J.; Ren, H.; Zhu, G.; Huang, J.; Shi, Y.-Q.: Detecting median filtering via two-dimensional AR models of multiple filtered residuals. Multimed. Tools Appl. 77(7), 7931–7953 (2018). https://doi.org/10.1007/s11042-017-4691-0

    Article  Google Scholar 

  27. Liu, A.; Zhao, Z.; Zhang, C.; Su, Y.: Median filtering forensics in digital images based on frequency-domain features. Multimed. Tools Appl. (2017). https://doi.org/10.1007/s11042-017-4845-0

    Article  Google Scholar 

  28. Wang, Q.; Zhang, R.: Double jpeg compression forensics based on a convolutional neural network. EURASIP J. Inf. Secur. (2016). https://doi.org/10.1186/s13635-016-0047-y

    Article  Google Scholar 

  29. Kirchner, M.; Fridrich, J.: On detection of median filtering in digital images. In: Memon, N.D., Dittmann, J., Alattar, A.M., III, E.J.D. (eds.) Media Forensics and Security II, vol. 7541, pp. 371–382. SPIE (2010). International Society for Optics and Photonics. https://doi.org/10.1117/12.839100

  30. Chuang, W.-H.; Swaminathan, A.; Wu, M.: Tampering identification using empirical frequency response. In: 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 1517–1520 (2009). https://doi.org/10.1109/ICASSP.2009.4959884

  31. Stuchi, J.A.; Angeloni, M.A.; Pereira, R.F.; Boccato, L.; Folego, G.; Prado, P.V.S.; Attux, R.R.F.: Improving image classification with frequency domain layers for feature extraction. In: 2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP), pp. 1–6 (2017). https://doi.org/10.1109/MLSP.2017.8168168

  32. Brosch, T.; Tam, R.: Efficient training of convolutional deep belief networks in the frequency domain for application to high-resolution 2d and 3d images. Neural Comput. 27, 1–17 (2014). https://doi.org/10.1162/NECO_a_00682

    Article  MATH  Google Scholar 

  33. Ergen, B.: Scale invariant and fixed-length feature extraction by integrating discrete cosine transform and autoregressive signal modeling for palmprint identification. Turk. J. Electr. Eng. Comput. Sci. 24, 1768–1781 (2016). https://doi.org/10.3906/elk-1309-65

    Article  Google Scholar 

  34. Chen, B.; Li, H.; Luo, W.; Huang, J.: Image processing operations identification via convolutional neural network. Sci. China Inf. Sci. (2020). https://doi.org/10.1007/s11432-018-9492-6

    Article  Google Scholar 

  35. Tang, H.; Ni, R.; Zhao, Y.; Li, X.: Median filtering detection of small-size image based on cnn. J. Vis. Commun. Image Represent. (2018). https://doi.org/10.1016/j.jvcir.2018.01.011

    Article  Google Scholar 

  36. Yang, P.; Ni, R.; Zhao, Y.; Cao, G.; Wu, H.; Zhao, W.: Robust contrast enhancement forensics using convolutional neural networks. CoRR (2018) arXiv:1803.04749

  37. Bas, P.; Filler, T.; Pevný, T.: Break our steganographic system: the ins and outs of organizing boss. In: Filler, T., Pevný, T., Craver, S., Ker, A. (eds.) Inf. Hiding, pp. 59–70. Springer, Berlin (2011). https://doi.org/10.1007/978-3-642-24178-9_5

    Chapter  Google Scholar 

  38. Bas, P.; Furon, T.: Bows2. In: 2015 IEEE 5th International Conference on Consumer Electronics—Berlin (ICCE-Berlin) (2007). http://bows2.ec-lille.fr/

  39. Schaefer, G., Stich, M.: Ucid: an uncompressed color image database, vol. 5307, pp. 472–480 (2004). https://doi.org/10.1117/12.525375

  40. Dang-Nguyen, D.-T.; Pasquini, C.; Conotter, V.; Boato, G.: Raise: a raw images dataset for digital image forensics. In: Proceedings of the 6th ACM Multimedia Systems Conference. MMSys ’15, pp. 219–224. ACM, New York, NY, USA (2015). https://doi.org/10.1145/2713168.2713194

  41. Database, I.: IEEE IFS-TC Image Forensics Challenge. Retrieved from http://ifc.recod.ic.unicamp.br/fc.website/index.py?sec=5 (2013)

  42. Natural resources conservation service photo gallery. (2019). http://plants.usda.gov/home

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vineet Khandelwal.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agarwal, A., Khandelwal, V. Multiple Manipulation Detection in Images Using Frequency Domain Features in 3D-CNN. Arab J Sci Eng 48, 14573–14587 (2023). https://doi.org/10.1007/s13369-023-07727-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-07727-7

Keywords

Navigation