Abstract
The study presents an experimental evaluation of performance properties of rubberized polymer modified asphalt (PMA) binders to compare two types of ground tire rubber (GTR): normal and treated. Styrene-butadiene-styrene (SBS) modified asphalt binder (PG 76-22) is used as a base PMA binder to produce rubberized PMA binder. The rubberized PMA binders were artificially short-term and long-term aged using the rolling thin film oven (RTFO) and pressure aging vessel (PAV) procedures. Superpave binder tests were carried out on the binders through the rotational viscometer (RV), the dynamic shear rheometer (DSR), and the bending beam rheometer (BBR). Additionally, the multiple stress creep recovery (MSCR) test was accomplished to investigate the rutting properties. In general, the results of this study indicated that (1) the viscosity properties are found to be dependent on GTR types and amounts, as expected, (2) the rutting properties of PMA binders are expected to be improved through the use of GTR, (3) the addition of GTR is observed to be effective in improving the cracking performances of PMA binder, and (4) in general, the PMA binders with treated GTR showed better performance properties, compared to the PMA binders with normal GTR.
Similar content being viewed by others
References
M. Mazumder, H. Kim, S. J. Lee, Performance properties of polymer modified asphalt binders containing wax additives, Inter. J. Pave. Res. Tech. 9 (2) (2016) 128–139.
P. Lavin, Asphalt pavements: A practical guide to design, production and maintenance for engineers and architects, CRC Press, New York, NY, 2014.
A. Adedeji, T. Grünfelder, F.S. Bates, C.W. Macosko, Stroup-Gardiner, M. and Newcomb, D.E., Asphalt modified by SBS triblock copolymer: structures and properties, Polymer Eng. Sci. 36 (12) (1996) 1707–1723.
Y. Becker, M.P. Mendez, Y. Rodriguez, Polymer modified asphalt, In Vision tecnologica, 2001.
R. Roque, B. Birgisson, C. Drakos, G. Sholar, Guidelines for use of modified binders. No. UF Project No. 4910-4504-964-12. University of Florida, Gainesville, FL, 2005.
H. H. Kim, K. D. Jeong, M. S. Lee, S. J. Lee, Performance properties of CRM binders with wax warm additives, Constr. Buil. Mater. 66 (2014) 356–360.
H. H. Kim, S. J. Lee, Effect of crumb rubber on viscosity of rubberized asphalt binders containing wax additives, Constr. Buil. Mater. 95 (2015) 65–73
H. H. Kim, M. Mazumder, S. J. Lee, Recycling of aged asphalt binders with wax warm additives, Road Mater. Pave. Des. 19 (5) (2018) 1203–1215.
B. Huang, L. Mohammad, P. Graves, C. Abadie, Louisiana experience with crumb rubber-modified hot-mix asphalt pavement, Transp. Res. Rec. (1789) (2002) 1–13.
G. B. Way, OGFC Meets CRM-Where the Rubber Meets the Rubber-12 Years of the durable success. The Asphalt Conference, Atlanta, Georgia, 1998.
S. K. Palit, K. Sudhakar Reddy, B. B. Pandey, Laboratory evaluation of crumb rubber modified asphalt mixes, J. Mater. Civ. Eng. 16 (1) (2004) 45–53.
J. Shen, Amirkhanian, S.N. The influence of crumb rubber modifier (CRM) microstructures on the high temperature properties of CRM binders, Inter. J.Pave. Eng. 6 (4) (2005) 265–271.
S. J. Lee, Characterization of recycled aged CRM binders, Dissertation, Clemson University, 2007.
B. E. Ruth, R. Roque, Crumb rubber modifier (CRM) in asphalt pavements. In Transportation Congress, Civil Engineers—Key to the World’s Infrastructure, ASCE (1–2) (1995) 768–785.
F. Xiao, P.W. Zhao, S.N. Amirkhanian, Fatigue behavior of rubberized asphalt concrete mixtures containing warm asphalt additives, Constr. Buil. Mater. 23 (10) (2009) 3144–3151.
M.F. Azizian, P.O. Nelson, Thayumanavan, P. and Williamson, K.J., Environmental impact of highway construction and repair materials on surface and ground waters: Case study: crumb rubber asphalt concrete, Waste Manage. 23(8) (2003) 719–728.
L. Xiang, J. Cheng, G. Que, Microstructure and performance of crumb rubber modified asphalt, Constr. Buil. Mater. 23 (12) (2009) 3586–3590.
H. H. Kim, S. J. Lee, Evaluation of rubber influence on cracking resistance of crumb rubber modified binders with wax additives, Canadian J. Civ. Eng. 43 (4) (2016) 326–333.
H. H. Kim, M. Mazumder, S. J. Lee, M. S. Lee, Characterization of recycled crumb rubber modified binders containing wax warm additives. J. Traffic Transp. Eng. (English Edition) 5 (3) (2018) 197–206.
H. H. Kim, M. Mazumder, M. S. Lee, S. J. Lee, Effect of blending time on viscosity of rubberized binders with wax additives, Inter. J. Pave. Res. Tech. 11(6) (2018)., 655–665.
H.U. Bahia, Critical evaluation of asphalt modification using strategic highway research program concepts, Transp. Res. Rec. (1488) (1995) 82–88.
Y. Yan, R. Roque, D. Hernando, S. Chun, Cracking performance characterisation of asphalt mixtures containing reclaimed asphalt pavement with hybrid binder, Road Mater. Pave. Des. 20 (2) (2019) 347–366.
R. Siddique, T.R. Naik, Properties of concrete containing scrap-tire rubber-an overview, Waste Manage. 24 (6) (2004) 563–569.
A. Behnood, Rheological properties of asphalt binders: An analysis of the Multiple Stress Creep Recovery test, (Doctoral dissertation), Purdue University, 2016.
J. Zhang, L. F. Walubita, A. N. Faruk, P. Karki, G. S. Simate, Use of the MSCR test to characterize the asphalt binder properties relative to HMA rutting performance-A laboratory study, Constr. Buil. Mater. 94 (2015) 218–227
N. Tabatabaee, H. Tabatabaee, Multiple stress creep and recovery and time sweep fatigue tests: Crumb rubber modified binder and mixture performance, Transp. Res. Rec. (2180) (2010) 67–74.
A. Behnood, A. Shah, R. S. McDaniel, M. Beeson, J. Olek, High-temperature properties of asphalt binders: Comparison of multiple stress creep recovery and performance grading systems, Transp. Res. Rec. 2574 (2016) 131–143.
H. Soenen, T. Blomberg, T. Pellinen, O. V. Laukkanen, The multiple stress creep-recovery test: a detailed analysis of repeatability and reproducibility, Road Mater. Pave. Des. 14 (sup1) (2013) 2–11.
A.V. Kataware, D. Singh, A study on rutting susceptibility of asphalt binders at high stresses using MSCR test, Innovative Infrastructure Solutions, 2 (1) (2017) 4.
A. W. Ali, H. H. Kim, M. Mazumder, M. S. Lee, S. J. Lee, Multiple Stress Creep Recovery (MSCR) characterization of polymer modified asphalt binder containing wax additives, Inter. J. Pave. Res. Tech. (2018). https://doi.org/10.1016/j.ijprt.2018.05.001
C. M. Johnson, H. Wen, H. U. Bahia, Practical application of viscoelastic continuum damage theory to asphalt binder fatigue characterization, J. Assoc. Asph. Paving Tech. 78 (2009) 597–638.
Y. Yan, D. Hernando, R. Roque, Fracture tolerance of asphalt binder at intermediate temperatures. Journal of Materials in Civil Engineering, 29 (9) (2017) 04017108.
C. M. Johnson, Estimating asphalt binder fatigue resistance using an accelerated test method, (Doctoral dissertation), Univ. of WisconsinMadison, Madison, WI, 2010.
H. H. Kim, M. Mazumder, A. Torres, S. J. Lee, M. S. Lee, Characterization of CRM Binders with Wax Additives Using an Atomic Force Microscopy (AFM) and an Optical Microscopy, Adv. Civ. Eng. Mater. 6 (1) (2017) 504–525.
R.L. Ott, M. Longnecker, An introduction to statistical methods and data analysis. ISBN: 0-534-25122-6. 5th ed. Duxbury Press: Garland, Texas, USA., 2001.
Asphalt Institute. Implementation of the multiple stress creep recovery test and specification, Lexington, KY., 2010.
Author information
Authors and Affiliations
Corresponding author
Additional information
Peer review under responsibility of Chinese Society of Pavement Engineering
Rights and permissions
About this article
Cite this article
Kim, H.H., Lee, MS. & Lee, SJ. Performance evaluation of polymer modified asphalt (PMA) binders containing ground tire rubber (GTR). Int. J. Pavement Res. Technol. 12, 215–222 (2019). https://doi.org/10.1007/s42947-019-0027-y
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s42947-019-0027-y