Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Performance evaluation of polymer modified asphalt (PMA) binders containing ground tire rubber (GTR)

  • Published:
International Journal of Pavement Research and Technology Aims and scope Submit manuscript

Abstract

The study presents an experimental evaluation of performance properties of rubberized polymer modified asphalt (PMA) binders to compare two types of ground tire rubber (GTR): normal and treated. Styrene-butadiene-styrene (SBS) modified asphalt binder (PG 76-22) is used as a base PMA binder to produce rubberized PMA binder. The rubberized PMA binders were artificially short-term and long-term aged using the rolling thin film oven (RTFO) and pressure aging vessel (PAV) procedures. Superpave binder tests were carried out on the binders through the rotational viscometer (RV), the dynamic shear rheometer (DSR), and the bending beam rheometer (BBR). Additionally, the multiple stress creep recovery (MSCR) test was accomplished to investigate the rutting properties. In general, the results of this study indicated that (1) the viscosity properties are found to be dependent on GTR types and amounts, as expected, (2) the rutting properties of PMA binders are expected to be improved through the use of GTR, (3) the addition of GTR is observed to be effective in improving the cracking performances of PMA binder, and (4) in general, the PMA binders with treated GTR showed better performance properties, compared to the PMA binders with normal GTR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Mazumder, H. Kim, S. J. Lee, Performance properties of polymer modified asphalt binders containing wax additives, Inter. J. Pave. Res. Tech. 9 (2) (2016) 128–139.

    Article  Google Scholar 

  2. P. Lavin, Asphalt pavements: A practical guide to design, production and maintenance for engineers and architects, CRC Press, New York, NY, 2014.

    Google Scholar 

  3. A. Adedeji, T. Grünfelder, F.S. Bates, C.W. Macosko, Stroup-Gardiner, M. and Newcomb, D.E., Asphalt modified by SBS triblock copolymer: structures and properties, Polymer Eng. Sci. 36 (12) (1996) 1707–1723.

    Article  Google Scholar 

  4. Y. Becker, M.P. Mendez, Y. Rodriguez, Polymer modified asphalt, In Vision tecnologica, 2001.

  5. R. Roque, B. Birgisson, C. Drakos, G. Sholar, Guidelines for use of modified binders. No. UF Project No. 4910-4504-964-12. University of Florida, Gainesville, FL, 2005.

    Google Scholar 

  6. H. H. Kim, K. D. Jeong, M. S. Lee, S. J. Lee, Performance properties of CRM binders with wax warm additives, Constr. Buil. Mater. 66 (2014) 356–360.

    Article  Google Scholar 

  7. H. H. Kim, S. J. Lee, Effect of crumb rubber on viscosity of rubberized asphalt binders containing wax additives, Constr. Buil. Mater. 95 (2015) 65–73

    Article  Google Scholar 

  8. H. H. Kim, M. Mazumder, S. J. Lee, Recycling of aged asphalt binders with wax warm additives, Road Mater. Pave. Des. 19 (5) (2018) 1203–1215.

    Article  Google Scholar 

  9. B. Huang, L. Mohammad, P. Graves, C. Abadie, Louisiana experience with crumb rubber-modified hot-mix asphalt pavement, Transp. Res. Rec. (1789) (2002) 1–13.

    Article  Google Scholar 

  10. G. B. Way, OGFC Meets CRM-Where the Rubber Meets the Rubber-12 Years of the durable success. The Asphalt Conference, Atlanta, Georgia, 1998.

  11. S. K. Palit, K. Sudhakar Reddy, B. B. Pandey, Laboratory evaluation of crumb rubber modified asphalt mixes, J. Mater. Civ. Eng. 16 (1) (2004) 45–53.

    Article  Google Scholar 

  12. J. Shen, Amirkhanian, S.N. The influence of crumb rubber modifier (CRM) microstructures on the high temperature properties of CRM binders, Inter. J.Pave. Eng. 6 (4) (2005) 265–271.

    Article  Google Scholar 

  13. S. J. Lee, Characterization of recycled aged CRM binders, Dissertation, Clemson University, 2007.

  14. B. E. Ruth, R. Roque, Crumb rubber modifier (CRM) in asphalt pavements. In Transportation Congress, Civil Engineers—Key to the World’s Infrastructure, ASCE (1–2) (1995) 768–785.

    Google Scholar 

  15. F. Xiao, P.W. Zhao, S.N. Amirkhanian, Fatigue behavior of rubberized asphalt concrete mixtures containing warm asphalt additives, Constr. Buil. Mater. 23 (10) (2009) 3144–3151.

    Article  Google Scholar 

  16. M.F. Azizian, P.O. Nelson, Thayumanavan, P. and Williamson, K.J., Environmental impact of highway construction and repair materials on surface and ground waters: Case study: crumb rubber asphalt concrete, Waste Manage. 23(8) (2003) 719–728.

    Article  Google Scholar 

  17. L. Xiang, J. Cheng, G. Que, Microstructure and performance of crumb rubber modified asphalt, Constr. Buil. Mater. 23 (12) (2009) 3586–3590.

    Article  Google Scholar 

  18. H. H. Kim, S. J. Lee, Evaluation of rubber influence on cracking resistance of crumb rubber modified binders with wax additives, Canadian J. Civ. Eng. 43 (4) (2016) 326–333.

    Article  Google Scholar 

  19. H. H. Kim, M. Mazumder, S. J. Lee, M. S. Lee, Characterization of recycled crumb rubber modified binders containing wax warm additives. J. Traffic Transp. Eng. (English Edition) 5 (3) (2018) 197–206.

    Google Scholar 

  20. H. H. Kim, M. Mazumder, M. S. Lee, S. J. Lee, Effect of blending time on viscosity of rubberized binders with wax additives, Inter. J. Pave. Res. Tech. 11(6) (2018)., 655–665.

    Article  Google Scholar 

  21. H.U. Bahia, Critical evaluation of asphalt modification using strategic highway research program concepts, Transp. Res. Rec. (1488) (1995) 82–88.

    Google Scholar 

  22. Y. Yan, R. Roque, D. Hernando, S. Chun, Cracking performance characterisation of asphalt mixtures containing reclaimed asphalt pavement with hybrid binder, Road Mater. Pave. Des. 20 (2) (2019) 347–366.

    Article  Google Scholar 

  23. R. Siddique, T.R. Naik, Properties of concrete containing scrap-tire rubber-an overview, Waste Manage. 24 (6) (2004) 563–569.

    Article  Google Scholar 

  24. A. Behnood, Rheological properties of asphalt binders: An analysis of the Multiple Stress Creep Recovery test, (Doctoral dissertation), Purdue University, 2016.

  25. J. Zhang, L. F. Walubita, A. N. Faruk, P. Karki, G. S. Simate, Use of the MSCR test to characterize the asphalt binder properties relative to HMA rutting performance-A laboratory study, Constr. Buil. Mater. 94 (2015) 218–227

    Article  Google Scholar 

  26. N. Tabatabaee, H. Tabatabaee, Multiple stress creep and recovery and time sweep fatigue tests: Crumb rubber modified binder and mixture performance, Transp. Res. Rec. (2180) (2010) 67–74.

    Article  Google Scholar 

  27. A. Behnood, A. Shah, R. S. McDaniel, M. Beeson, J. Olek, High-temperature properties of asphalt binders: Comparison of multiple stress creep recovery and performance grading systems, Transp. Res. Rec. 2574 (2016) 131–143.

    Article  Google Scholar 

  28. H. Soenen, T. Blomberg, T. Pellinen, O. V. Laukkanen, The multiple stress creep-recovery test: a detailed analysis of repeatability and reproducibility, Road Mater. Pave. Des. 14 (sup1) (2013) 2–11.

    Article  Google Scholar 

  29. A.V. Kataware, D. Singh, A study on rutting susceptibility of asphalt binders at high stresses using MSCR test, Innovative Infrastructure Solutions, 2 (1) (2017) 4.

    Google Scholar 

  30. A. W. Ali, H. H. Kim, M. Mazumder, M. S. Lee, S. J. Lee, Multiple Stress Creep Recovery (MSCR) characterization of polymer modified asphalt binder containing wax additives, Inter. J. Pave. Res. Tech. (2018). https://doi.org/10.1016/j.ijprt.2018.05.001

  31. C. M. Johnson, H. Wen, H. U. Bahia, Practical application of viscoelastic continuum damage theory to asphalt binder fatigue characterization, J. Assoc. Asph. Paving Tech. 78 (2009) 597–638.

    Google Scholar 

  32. Y. Yan, D. Hernando, R. Roque, Fracture tolerance of asphalt binder at intermediate temperatures. Journal of Materials in Civil Engineering, 29 (9) (2017) 04017108.

    Article  Google Scholar 

  33. C. M. Johnson, Estimating asphalt binder fatigue resistance using an accelerated test method, (Doctoral dissertation), Univ. of WisconsinMadison, Madison, WI, 2010.

    Google Scholar 

  34. H. H. Kim, M. Mazumder, A. Torres, S. J. Lee, M. S. Lee, Characterization of CRM Binders with Wax Additives Using an Atomic Force Microscopy (AFM) and an Optical Microscopy, Adv. Civ. Eng. Mater. 6 (1) (2017) 504–525.

    Google Scholar 

  35. R.L. Ott, M. Longnecker, An introduction to statistical methods and data analysis. ISBN: 0-534-25122-6. 5th ed. Duxbury Press: Garland, Texas, USA., 2001.

    Google Scholar 

  36. Asphalt Institute. Implementation of the multiple stress creep recovery test and specification, Lexington, KY., 2010.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon-Jae Lee.

Additional information

Peer review under responsibility of Chinese Society of Pavement Engineering

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H.H., Lee, MS. & Lee, SJ. Performance evaluation of polymer modified asphalt (PMA) binders containing ground tire rubber (GTR). Int. J. Pavement Res. Technol. 12, 215–222 (2019). https://doi.org/10.1007/s42947-019-0027-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42947-019-0027-y

Keywords

Navigation