Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Drying viscoelastic materials: a non-Fickian approach

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we study a system of partial differential equations defined in a moving domain. This system is defined by a heat equation and a diffusion equation for a concentration of non-Fickian type whose diffusion coefficient depends on the temperature, completed with suitable initial and boundary conditions. The non-Fickian mass flux is established considering the viscoelastic properties of the medium where the strain depends on the temperature and on the concentration. The initial boundary value problem (IBVP) analyzed can be used to describe the drying of viscoelastic materials where the internal structure offers a resistance to the movement of the moisture molecules and a consequent delay in the moisture removal. Due to heat transference into the materials and moisture removal, shrinkage of the medium occurs. The stability of the IBVP defined in a moving domain is analyzed and its qualitative behavior is numerically studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

Download references

Acknowledgements

J.A. Ferreira was partially supported by the project NEXT.parts—Next-generation of advanced hybrid parts, and by the Centre for Mathematics of the University of Coimbra—UID/MAT/00324/2019, funded by the Portuguese Government through FCT/MEC and co-funded by the European Regional Development Fund through the Partnership Agreement PT2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aram Emami.

Additional information

Communicated by Apala Majumdar.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: A moving discrete model

Appendix: A moving discrete model

The IBVP (43)–(50) is solved numerically using a finite difference discretization in the uniform meshes in [0, 1] and \([0,\tau _f]\) defined by

$$\begin{aligned}&\{\xi _i,~~ i=0,1,\dots ,N,~~ \xi _0=0,~~ \xi _N=1,~~ \xi _i-\xi _{i-1}=\varDelta \xi ,~~ i=1,2,\dots ,N\},\\&\{\tau _j,~~ j=0,1,\dots ,M_\tau , ~~\tau _0=0, ~~\tau _{M_\tau }=\tau _f,~~ \tau _j-\tau _{j-1}=\varDelta \tau ,~~ j=1,2,\dots ,M_\tau \}. \end{aligned}$$

By \(g_i^j,f_i^j,\ell _j\) we represent the finite difference approximations for \(g(\xi _i,\tau _j), f(\xi _i,\tau _j)\) and \(\ell (\tau _j)\), respectively, defined by the IMEX (implicit–explicit) method presented in what follows. The finite difference approximation for (46) is the one proposed by Furzeland in Crank (1984)

$$\begin{aligned} \frac{\ell _{j+1}-\ell _j}{\varDelta \tau }={\overline{D}}(f_N^j)\frac{M_0}{\ell _j} \frac{3g^j_N-4g^j_{N-1} +g^j_{N-2}}{2\varDelta \xi }, \end{aligned}$$
(53)

for \(j=0,\dots ,M_\tau -1\). Equations (43)–(45) are discretized by

$$\begin{aligned} \frac{ g_i^{j+1}-g_i^j}{\varDelta \tau }= & {} \frac{1}{\ell _j^2}\bigg ({\overline{D}}(f_{i+1}^j)\frac{g_{i+1}^{j+1} -g_i^{j+1}}{(\varDelta \xi )^2}-{\overline{D}}(f_{i}^j)\frac{g_{i}^{j+1} -g_{i-1}^{j+1}}{(\varDelta \xi )^2}\bigg )\nonumber \\&+\frac{D_{{\text {vnon}}}}{\ell _j^2}\frac{\sigma _{n,i-1}^{j}-2\sigma _{n,i}^{j} +\sigma _{n,i+1}^{j}}{(\varDelta \xi )^2}\nonumber \\&+\frac{\xi _i}{\ell _j}\frac{\ell _{j+1}-\ell _j}{\varDelta \tau }\frac{g^{j+1}_{i+1} -g^{j+1}_{i-1}}{2\varDelta \xi }, \end{aligned}$$
(54)
$$\begin{aligned} \frac{ f_i^{j+1}-f_i^j}{\varDelta \tau }= & {} \frac{Le}{\ell _j^2}\frac{f_{i-1}^{j+1}-2f_i^{j+1} +f_{i+1}^{j+1}}{(\varDelta \xi )^2}\nonumber \\&+ \frac{\xi _i}{\ell _j} \frac{\ell _{j+1}-\ell _j}{\varDelta \tau } \frac{f^{j+1}_{i+1} -f^{j+1}_{i-1}}{2\varDelta \xi }, \end{aligned}$$
(55)
$$\begin{aligned} \frac{\sigma _{n,i}^{j+1}-\sigma _{n,i}^{j}}{\varDelta \tau }= & {} -E_{{\text {non}}}\sigma _{n,i}^{j}\nonumber \\&+ \frac{\xi _i}{\ell _j} \frac{\ell _{j+1} -\ell _j}{\varDelta \tau } \bigg (\mu _{{\text {non}}}\alpha _T(T_{{\text {air}}}-T_0) \frac{f^{j+1}_{i+1}-f^{j+1}_{i-1}}{2\varDelta \xi }\nonumber \\&+ \mu _{{\text {non}}}\alpha _M M_0 \frac{g^{j+1}_{i+1}-g^{j+1}_{i-1}}{2\varDelta \xi } +\frac{\sigma _{n,i+1}^j-\sigma _{n,i-1}^j}{2\varDelta \xi }\bigg )\nonumber \\&- \mu _{{\text {non}}}\alpha _T(T_{{\text {air}}}-T_0) \frac{f_{i}^{j+1}-f_i^j}{\varDelta \tau }-\mu _{{\text {non}}}\alpha _MM_0 \frac{g_{i}^{j+1}-g_i^j}{\varDelta \tau }, \end{aligned}$$
(56)

respectively, for \(i=1,\dots ,N-1\) and \(j=0,\dots ,M_\tau -1\), where

$$\begin{aligned} {\overline{D}}(v_{i}^n)=\frac{{\overline{D}}(v_{i}^n)+{\overline{D}}(v_{i-1}^n)}{2}. \end{aligned}$$

The initial condition (47) becomes

$$\begin{aligned} f_i^0=0,\,\, g_i^0=1,\,\, \sigma _{n,i}^0=1,\,\, \ell _0=1,\,\, i=1,\dots ,N-1. \end{aligned}$$
(57)

The boundary condition (48)–(50) are discretized using forward and backward finite differences for space derivatives, that is, by

$$\begin{aligned}&\displaystyle f_1^{j+1}=f_{0}^{j+1} \,\, , \,\, g_1^{j+1}=g_{0}^{j+1},&\end{aligned}$$
(58)
$$\begin{aligned}&\displaystyle -\frac{f_{N}^{j+1}-f_{N-1}^{j+1}}{\varDelta \xi }+\lambda \frac{g_{N}^{j+1}-g_{N-1}^{j+1}}{\varDelta \xi }=\ell _jBi(f_{N}^{j+1}-1),&\end{aligned}$$
(59)
$$\begin{aligned}&\displaystyle -{\overline{D}}(f_{N}^j)\frac{g_{N}^{j+1}-g_{N-1}^{j+1}}{\varDelta \xi }-D_{{\text {vnon}}}\frac{\sigma _{n,N}^{j}-\sigma _{n,N-1}^{j}}{\varDelta \xi }=\ell _jBi_{\text {m}}\left( g_{N}^{j+1}-\frac{M_{\text {e}}}{M_0}\right) ,&\end{aligned}$$
(60)

respectively, for \(j=0,\dots ,M_\tau -1\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emami, A., Azhdari, E., Ferreira, J.A. et al. Drying viscoelastic materials: a non-Fickian approach. Comp. Appl. Math. 39, 125 (2020). https://doi.org/10.1007/s40314-020-1138-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-020-1138-4

Keywords

Mathematics Subject Classification

Navigation