Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Cyanobacteria and microcystins contamination in drinking water sources: a review of occurrence, exposure, and mitigation measures

  • Mini Review
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

This review provides a comprehensive literature search on the occurrence of cyanobacteria blooms and microcystins contamination in drinking water sources, potential human exposure, mitigation, and the associated challenges. A total of 49 relevant studies indicate that cyanobacterial blooms are commonly reported on six continents, including Asia, Africa, North America, South America, Europe, and Australia. Overall, cyanobacterial biomass reported in these reviewed studies falls within the classification of Alert Level 2, which is indicated by chlorophyll-a concentrations exceeded 12 μg/L. Moreover, the published data also revealed that 59% of the reported microcystins concentrations exceeded the WHO guideline value for safe lifetime consumption of 1 μg/L. These potential human exposures to cyanobacteria and microcystins are based on the concentrations reported in raw drinking water sources, as a lack of studies have emphasized the detection of microcystins in the treated drinking water or at the last stage of the water treatment process. Nevertheless, it is important to acknowledge the potential health risk associated with the exposure to microcystins contamination in drinking water, as this metabolite is potent and chemically stable. Mitigation measures, including management approaches, physical, chemical, and biological techniques, can be applied to control cyanobacterial blooms and microcystins contamination in drinking water sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

References

  1. Demoulin CF, Lara YJ, Cornet L, François C, Baurain D, Wilmotte A, Javaux EJ (2019) Cyanobacteria evolution: insight from the fossil record. Free Radic Biol Med 140:206–223. https://doi.org/10.1016/j.freeradbiomed.2019.05.007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Ibelings BW, Kurmayer R, Azevedo SMFO, Wood SA, Chorus I, Welker M (2021) Understanding the occurrence of cyanobacteria and cyanotoxins. Toxic Cyanobacteria in Water. CRC Press, Boca Raton (FL), pp 213–294

    Chapter  Google Scholar 

  3. Issa AA, Abd-Alla MH, Ohyama T (2014) Nitrogen fixing cyanobacteria: future prospect. Advances in biology and ecology of nitrogen fixation 2:24–48. https://doi.org/10.5772/56995

    Article  CAS  Google Scholar 

  4. Nosheen S, Ajmal I, Song Y (2021) Microbes as biofertilizers, a potential approach for sustainable crop production. Sustainability 13(4):1–20. https://doi.org/10.3390/su13041868

    Article  Google Scholar 

  5. Buratti FM, Manganelli M, Vichi S, Stefanelli M, Scardala S, Testai E, Funari E (2017) Cyanotoxins: producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation. Arch Toxicol 91:1049–1130. https://doi.org/10.1007/s00204-016-1913-6

    Article  PubMed  CAS  Google Scholar 

  6. Scott JT, Marcarelli AM (2012) Cyanobacteria in freshwater benthic environments. In: Whitton BA, editors: Ecology of Cyanobacteria II, 2nd ed. Dordrecht: Springer:271–289.

  7. Vidal L, Ballot A, Azevedo SMFO, Padisák J, Welker M (2021) Introduction to cyanobacteria. Toxic Cyanobacteria in Water. CRC Press, Boca Raton (FL), pp 163–204

    Chapter  Google Scholar 

  8. Bogard MJ, Vogt RJ, Hayes NM, Leavitt PR (2020) Unabated nitrogen pollution favors growth of toxic cyanobacteria over chlorophytes in most hypereutrophic lakes. Environ Sci Technol 54(6):3219–3227. https://doi.org/10.1021/acs.est.9b06299

    Article  PubMed  CAS  Google Scholar 

  9. Chia MA, Jankowiak JG, Kramer BJ, Goleski JA, Huang IS, Zimba PV, do Carmo Bittencourt-Oliveira M, Gobler CJ (2018) Succession and toxicity of Microcystis and Anabaena (Dolichospermum) blooms are controlled by nutrient-dependent allelopathic interactions. Harmful Algae 74:67–77. https://doi.org/10.1016/j.hal.2018.03.002

    Article  PubMed  CAS  Google Scholar 

  10. Essaid HI, Kuwabara JS, Corson-Dosch NT, Carter JL, Topping BR (2021) Evaluating the dynamics of groundwater, lakebed transport, nutrient inflow and algal blooms in upper Klamath Lake, Oregon, USA. Sci Total Environ 765:142768. https://doi.org/10.1016/j.scitotenv.2020.142768

    Article  PubMed  CAS  Google Scholar 

  11. Oudra B, Dadi-El Andaloussi M, Vasconcelos VM (2009) Identification and quantification of microcystins from a Nostoc muscorum bloom occurring in Oukaïmeden river (high-Atlas Mountains of Marrakech, Morocco). Environ Monit Assess 149(1–4):437–444. https://doi.org/10.1007/s10661-008-0220-y

    Article  PubMed  CAS  Google Scholar 

  12. Lu J, Zhu B, Struewing I, Xu N, Duan S (2019) Nitrogen–phosphorus-associated metabolic activities during the development of a cyanobacterial bloom revealed by metatranscriptomics. Sci Rep 9(1):1–11. https://doi.org/10.1038/s41598-019-38481-2

    Article  CAS  Google Scholar 

  13. Su M, Andersen T, Burch M, Jia Z, An W, Yu J, Yang M (2019) Succession and interaction of surface and subsurface cyanobacterial blooms in oligotrophic/mesotrophic reservoirs: a case study in Miyun Reservoir. Sci Total Environ 649:1553–1562. https://doi.org/10.1016/j.scitotenv.2018.08.307

    Article  PubMed  CAS  Google Scholar 

  14. Wang H, Li L, Cheng S, Chen L, Zhang H, Zhang X (2024) Production and release of 2-MIB in Pseudanabaena: Effects of growth phases on cell characteristics and 2-MIB yield. Ecotoxicol Environ Saf 274:116198. https://doi.org/10.1016/j.ecoenv.2024.116198

    Article  PubMed  CAS  Google Scholar 

  15. Ren X, Sun J, Zhang Q, Zuo Y, Liu J, Liu J, Li L, Song L (2022) The emergent integrated constructed wetland-reservoir (CW-R) is being challenged by 2-Methylisoborneol episode—a case study in Yanlonghu CW-R. Water 14(17):2670. https://doi.org/10.3390/w14172670

    Article  CAS  Google Scholar 

  16. Feuchtmayr H, Pottinger TG, Moore A, De Ville MM, Caillouet L, Carter HT, Pereira MG, Maberly SC (2019) Effects of brownification and warming on algal blooms, metabolism, and higher trophic levels in productive shallow lake mesocosms. Sci Total Environ 678:227–238. https://doi.org/10.1016/j.scitotenv.2019.04.105

    Article  PubMed  CAS  Google Scholar 

  17. Williamson CE, Neale PJ, Hylander S, Rose KC, Figueroa FL, Robinson SA, Häder DP, Wängberg S, Worrest RC (2020) The interactive effects of stratospheric ozone depletion, UV radiation, and climate change on aquatic ecosystems. Photochem Photobiol Sci 18(3):717–746. https://doi.org/10.1039/C8PP90062K

    Article  Google Scholar 

  18. Kultschar B, Llewellyn C (2018) Secondary metabolites in cyanobacteria. Secondary Metabolites––Sources and Applications. 64. https://doi.org/10.5772/intechopen.75648

  19. Rastogi RP, Sinha RP (2009) Biotechnological and industrial significance of cyanobacterial secondary metabolites. Biotechnol Adv 27(4):521–539. https://doi.org/10.1016/j.biotechadv.2009.04.009

    Article  PubMed  CAS  Google Scholar 

  20. Rastogi RP, Madamwar D, Incharoensakdi A (2015) Bloom dynamics of cyanobacteria and their toxins: environmental health impacts and mitigation strategies. Front Microbiol 6:1–22. https://doi.org/10.3389/fmicb.2015.01254

    Article  Google Scholar 

  21. Bajpai R, Sharma NK, Rai AK (2013) Physiological evidence indicates microcystin-LR to be a part of quantitative chemical defense system. J App Phycol 25:1575–1585. https://doi.org/10.1007/s10811-013-9981-y

    Article  CAS  Google Scholar 

  22. Śliwińska-Wilczewska S, Wiśniewska K, Konarzewska Z, Cieszyńska A, Felpeto AB, Lewandowska AU, Latała A (2021) The current state of knowledge on taxonomy, modulating factors, ecological roles, and mode of action of phytoplankton allelochemicals Sylwia. Sci Total Environ 773:145681. https://doi.org/10.1016/j.scitotenv.2021.145681

    Article  PubMed  CAS  Google Scholar 

  23. Chorus I, Welker M (2021) Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. Taylor & Francis, London, p 858

    Book  Google Scholar 

  24. Drobac D, Tokodi N, Kiprovski B, Malenčić D, Važić T, Nybom S, Meriluoto J, Svirčev Z (2017) Microcystin accumulation and potential effects on antioxidant capacity of leaves and fruits of Capsicum annuum. J Toxicol Environ Health––A: Curr. 80(3):145–154. https://doi.org/10.1080/15287394.2016.1259527

    Article  CAS  Google Scholar 

  25. Kubickova B, Babica P, Hilscherová K, Šindlerová L (2019) Effects of cyanobacterial toxins on the human gastrointestinal tract and the mucosal innate immune system. Environ Sci Eur 31(1):1–27. https://doi.org/10.1186/s12302-019-0212-2

    Article  CAS  Google Scholar 

  26. Nielsen MC, Jiang SC (2020) Can cyanotoxins penetrate human skin during water recreation to cause negative health effects? Harmful Algae 98:101872. https://doi.org/10.1016/j.hal.2020.101872

    Article  PubMed  CAS  Google Scholar 

  27. Méresse S, Larrigaldie V, Oummadi A, de Concini V, Morisset-Lopez S, Reverchon F, Menuet A, Montecot-Dubourg C, Mortaud S (2022) β-N-Methyl-Amino-L-Alanine cyanotoxin promotes modification of undifferentiated cells population and disrupts the inflammatory status in primary cultures of neural stem cells. Toxicology 482:153358. https://doi.org/10.1016/j.tox.2022.153358

    Article  PubMed  CAS  Google Scholar 

  28. Metcalf JS, Tischbein M, Cox PA, Stommel EW (2021) Cyanotoxins and the nervous system. Toxins 13(9):1–19. https://doi.org/10.3390/toxins13090660

    Article  CAS  Google Scholar 

  29. Bailiu-Rodriguez D, Peraino NJ, Premathilaka SH, Birbeck JA, Baliu-Rodriguez T, Westrick JA, Isailovic D (2022) Identification of novel microcystins using high-resolution MS and MSn with python code. Environ Sci Technol 56:1652–1663. https://doi.org/10.1021/acs.est.1c04296

    Article  CAS  Google Scholar 

  30. Manganelli M, Scardala S, Stefanelli M, Palazzo F, Funari E, Vichi S, Buratti FM, Testai E (2012) Emerging health issues of cyanobacterial blooms. Ann Ist Super Sanita 48:415–428. https://doi.org/10.4415/Ann_12_04_0

    Article  PubMed  Google Scholar 

  31. Massey IY, Yang F, Ding Z, Yang S, Guo J, Al-Osman M, Kamegni RB, Zeng W (2018) Exposure routes and health effects of microcystins on animals and humans: a mini-review. Toxicon 151:156–162. https://doi.org/10.1016/j.toxicon.2018.07.010

    Article  PubMed  CAS  Google Scholar 

  32. Massey IY, Yang F (2020) A mini review on microcystins and bacterial degradation. Toxins 12(4):268. https://doi.org/10.3390/toxins12040268

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Chen L, Chen J, Zhang X, Xie P (2016) A review of reproductive toxicity of microcystins. J Hazard Mater 301:381–399. https://doi.org/10.1016/j.jhazmat.2015.08.041

    Article  PubMed  CAS  Google Scholar 

  34. Falconer IR, Runnegar MT, Beresford AM (1983) Evidence of liver damage by toxin from a bloom of the blue-green alga. Microcystis aeruginosa Med J Aust 1(11):511–514. https://doi.org/10.5694/j.1326-5377.1983.tb136192.x

    Article  PubMed  CAS  Google Scholar 

  35. Spoof L, Catherine A (2017) Appendix 3: tables of microcystins and nodularins. In: handbook of cyanobacterial monitoring and cyanotoxin analysis. John Wiley and Sons Ltd., Chichester, UK, pp 526–537. https://doi.org/10.1002/9781119068761.app3

  36. Liu J, Sun Y (2015) The role of PP2A-associated proteins and signal pathways in microcystin-LR toxicity. Toxicol Lett 236(1):1–7. https://doi.org/10.1016/j.toxlet.2015.04.010

    Article  PubMed  CAS  Google Scholar 

  37. MacKintosh C, Beattie KA, Klumpp S, Cohen P, Codd GA (1990) Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants. FEBS Lett 264(2):187–192. https://doi.org/10.1016/0014-5793(90)80245-E

    Article  PubMed  CAS  Google Scholar 

  38. Dawson RM (1998) The toxicology of microcystins. Toxicon 36(7):953–962. https://doi.org/10.1016/S0041-0101(97)00102-5

    Article  PubMed  CAS  Google Scholar 

  39. Zhou M, Tu WW, Xu J (2015) Mechanisms of microcystin-LR-induced cytoskeletal disruption in animal cells. Toxicon 101:92–100. https://doi.org/10.1016/j.toxicon.2015.05.005

    Article  PubMed  CAS  Google Scholar 

  40. Zhao Y, Yan Y, Xie L, Wang L, He Y, Wan X, Xue Q (2020) Long-term environmental exposure to microcystins increases the risk of nonalcoholic fatty liver disease in humans: a combined fisher-based investigation and murine model study. Environ Intern 138:105648. https://doi.org/10.1016/j.envint.2020.105648

    Article  CAS  Google Scholar 

  41. WHO (2022) Guidelines for drinking-water quality, 4th (ed.) incorporating the 1st and 2nd addendum. Geneva: World Health Organization:614 pp. https://www.who.int/publications/i/item/9789240045064

  42. Ibelings BW, Backer LC, Kardinaal WE, Chorus I (2014) Current approaches to cyanotoxin risk assessment and risk management around the globe. Harmful Algae 49:63–74. https://doi.org/10.1016/j.hal.2014.10.002

    Article  CAS  Google Scholar 

  43. Ashraful Islam M, Beardall J (2017) Growth and photosynthetic characteristics of toxic and non-toxic strains of the cyanobacteria Microcystis aeruginosa and Anabaena circinalis in relation to light. Microorganisms 5(3):45. https://doi.org/10.3390/microorganisms5030045

    Article  PubMed  CAS  Google Scholar 

  44. Muhetaer G, Asaeda T, Jayasanka SMDH, Baniya MB, Abeynayaka HDL, Rashid MH, Yan HY (2020) Effects of light intensity and exposure period on the growth and stress responses of two cyanobacteria species: Pseudanabaena galeata and Microcystis aeruginosa. Water 12(2):407. https://doi.org/10.3390/w12020407

    Article  CAS  Google Scholar 

  45. Massey IY, Al Osman M, Yang F (2020) An overview on cyanobacterial blooms and toxins production: their occurrence and influencing factors. Toxin Rev 41(1):326–346. https://doi.org/10.1080/15569543.2020.1843060

    Article  CAS  Google Scholar 

  46. Napiórkowska-Krzebietke A, Kalinowska K, Bogacka-Kapusta E, Stawecki K, Traczuk P (2021) Persistent blooms of filamentous cyanobacteria in a cormorant-affected aquatic ecosystem: Ecological indicators and consequences. Ecol Indic 124:107421. https://doi.org/10.1016/j.ecolind.2021.107421

    Article  CAS  Google Scholar 

  47. Reinl KL, Brookes JD, Carey CC, Harris TD, Ibelings BW, Morales-Williams AM, De Senerpont Domis LN, Atkins KS, Isles PDF, Mesman JP, North RL, Rudstam LG, Stelzer JAA, Venkiteswaran JJ, Yokota K, Zhan Q (2021) Cyanobacterial blooms in oligotrophic lakes: shifting the high-nutrient paradigm. Freshw Biol 66(9):1846–1859. https://doi.org/10.1111/fwb.13791

    Article  Google Scholar 

  48. Walls JT, Wyatt KH, Doll JC, Rubenstein EM, Rober AR (2018) Hot and toxic: temperature regulates microcystin release from cyanobacteria. Sci Total Environ 610:786–795. https://doi.org/10.1016/j.scitotenv.2017.08.149

    Article  PubMed  CAS  Google Scholar 

  49. Paerl HW, Havens KE, Hall NS, Otten TG, Zhu M, Xu H, Zhu G, Qin B (2020) Mitigating a global expansion of toxic cyanobacterial blooms: confounding effects and challenges posed by climate change. Mar Freshw Res 71(5):579–592. https://doi.org/10.1071/MF18392

    Article  CAS  Google Scholar 

  50. Roegner A, Sitoki L, Weirich C, Corman J, Owage D, Umami M, Odada E, Miruka J, Ogari Z, Smith W, Rejmankova E, Miller TR (2020) Harmful algal blooms threaten the health of Peri-Urban Fisher communities: a case study in Kisumu Bay, Lake Victoria. Kenya Expo Health 12(4):835–848. https://doi.org/10.1007/s12403-019-00342-8

    Article  PubMed  CAS  Google Scholar 

  51. Romo S, Soria J, Fernández F, Ouahid Y, Barón-Solá Á (2013) Water residence time and the dynamics of toxic cyanobacteria. Freshw Biol 58(3):513–522. https://doi.org/10.1111/j.1365-2427.2012.02734.x

    Article  CAS  Google Scholar 

  52. Zeman-Kuhnert S, Thiel V, Heim C (2022) Effects of weather extremes on the nutrient dynamics of a shallow eutrophic lake as observed during a three-year monitoring study. Water 14(13):2032. https://doi.org/10.3390/w14132032

    Article  CAS  Google Scholar 

  53. A Rahman ARA, Sinang SC, Nayan N (2022) Response of algal biomass and macrophyte communities to internal or external nutrient loading. Environ Monit Assess 194(7):491. https://doi.org/10.1007/s10661-022-10116-6

    Article  PubMed  CAS  Google Scholar 

  54. Barathan BP, Chen W, Su Y, Wang X, Chen Y (2023) The effects of nutrient loading from different sources on eutrophication in a large shallow lake in Southeast China. Environ Geochem Health 45(11):7603–7620. https://doi.org/10.1007/s10653-023-01641-5

    Article  PubMed  CAS  Google Scholar 

  55. Swann MM, Cortes A, Forrest AL, Framsted N, Sadro S, Schladow SG, Palma-Dow D (2024) Internal phosphorus loading alters nutrient limitation and contributes to cyanobacterial blooms in a polymictic lake. Aquat Sci 86(2):1–22. https://doi.org/10.1007/s00027-024-01045-2

    Article  CAS  Google Scholar 

  56. Vanderley RF, Ger KA, Becker V, Bezerra MGT, Panosso R (2021) Abiotic factors driving cyanobacterial biomass and composition under perennial bloom conditions in tropical latitudes. Hydrobiologia 848:943–960. https://doi.org/10.1007/s10750-020-04504-7

    Article  Google Scholar 

  57. Deutsch ES, Alameddine I, Qian SS (2020) Using structural equation modeling to better understand microcystis biovolume dynamics in a mediterranean hypereutrophic reservoir. Ecol Model 435:109282. https://doi.org/10.1016/j.ecolmodel.2020.109282

    Article  CAS  Google Scholar 

  58. Sadegh AS, Sidoumou Z, Dia M, Pinchetti JLG, Bouaïcha N (2021) Impacts of phosphorus loads on the water quality and the proliferation of harmful cyanobacteria in Foum-Gleita Reservoir (Mauritania). Ann Limnol. https://doi.org/10.1051/limn/2020029

    Article  Google Scholar 

  59. Tanvir RU, Hu Z, Zhang Y, Lu J (2021) Cyanobacterial community succession and associated cyanotoxin production in hypereutrophic and eutrophic freshwaters. Environ Pollut 290:1–26. https://doi.org/10.1016/j.envpol.2021.118056

    Article  CAS  Google Scholar 

  60. Nwankwegu AS, Yang G, Zhang L, Xie D, Ohore OE, Adeyeye OA, Li Y, Yao X, Song Z, Yonas MW (2023) Ecosystem anthropogenic enrichments enhance Chroococcus abundance and suppress Anabaena during cyanobacterial-dominated spring blooms in the Pengxi River, three Gorges Reservoir. China Mar Pollut Bull 193:115141. https://doi.org/10.1016/j.marpolbul.2023.115141

    Article  PubMed  CAS  Google Scholar 

  61. Chaffin JD, Westrick JA, Reitz LA, Bridgeman TB (2023) Microcystin congeners in Lake Erie follow the seasonal pattern of nitrogen availability. Harmful Algae. https://doi.org/10.1016/j.hal.2023.102466

    Article  PubMed  PubMed Central  Google Scholar 

  62. Sinang SC, Reichwaldt ES, Ghadouani A (2013) Spatial and temporal variability in the relationship between cyanobacterial biomass and microcystins. Environ Monit Assess 185(8):6379–6395. https://doi.org/10.1007/s10661-012-3031-0

    Article  PubMed  CAS  Google Scholar 

  63. Reinl KL, Harris TD, North RL, Almela P, Berger SA, Bizic M, Burnet SH, Grossart HP, Ibelings BW, Jakobsson E, Knoll LB, Lafrancois BM, McElarney Y, Morales-Williams AM, Obertegger U, Ogashawara I, Paule-Mercado MC, Peierls BL, Rusak JA, Sarkar S, Sharma S, Trout-Haney JV, Urrutia-Cordero P, Venkiteswaran JJ, Wain DJ, Warner K, Weyhenmeyer GA, Yokota K (2023) Blooms also like it cold. Limnol Oceanogr Lett. https://doi.org/10.1002/lol2.10316

    Article  Google Scholar 

  64. Tan X, Duan Z, Li N, Shen H, Zhen S, Xiao M (2015) Photosynthetic activity of bloom-forming cyanobacteria in winter and their relationship with light intensity. Fresenius Environ Bull 24(12):4297–4302

    CAS  Google Scholar 

  65. Knapp D, Fernández Castro B, Marty D, Loher E, Köster O, Wüest A, Posch T (2021) The red harmful plague in times of climate change: blooms of the cyanobacterium Planktothrix rubescens triggered by stratification dynamics and irradiance. Front Microbiol 12:705914. https://doi.org/10.3389/fmicb.2021.705914

    Article  PubMed  PubMed Central  Google Scholar 

  66. Lenard T, Poniewozik M (2022) Planktothrix agardhii versus Planktothrix rubescens: Separation of ecological niches and consequences of cyanobacterial dominance in freshwater. Int J Environ Res Pub Health 19(22):14897. https://doi.org/10.3390/ijerph192214897

    Article  CAS  Google Scholar 

  67. Jochimsen EM, Carmichael WW, An JS, Cardo DM, Cookson ST, Holmes CE, Antunes MB, de Melo Filho DA, Lyra TM, Barreto VS, Azevedo SM, Jarvis WR (1998) Liver failure and death after exposure to microcystins at a hemodialysis center in Brazil. N Engl J Med 338(13):873–878. https://doi.org/10.1056/NEJM199803263381304

    Article  PubMed  CAS  Google Scholar 

  68. Domingos P, Rubim TK, Molica RJR, Azevedo SMFO, Carmichael WW (1999) First report of microcystin production by picoplanktonic cyanobacteria isolated from a northeast Brazilian drinking water supply. Environ Toxicol 14(1):31–35. https://doi.org/10.1002/(SICI)1522-7278(199902)14:1%3c31::AID-TOX6%3e3.0.CO;2-B

    Article  CAS  Google Scholar 

  69. Hurtado I, Pouget L, Fernández S, Cascales P (2022) Monitoring and forecasting cyanobacteria risk for a drinking water plant in Spain. Water Supply 22(7):6296–6307. https://doi.org/10.2166/ws.2022.246

    Article  CAS  Google Scholar 

  70. Bogialli S, Nigro Di Gregorio F, Lucentini L, Ferretti E, Ottaviani M, Ungaro N, Abis PP, Cannarozzi De Grazia M (2013) Management of a toxic cyanobacterium bloom (Planktothrix rubescens) affecting an Italian drinking water basin: a case study. Environ Sci Technol 47(1):574–583. https://doi.org/10.1021/es302260p

    Article  PubMed  CAS  Google Scholar 

  71. Di Gregorio FN, Bogialli S, Ferretti E, Lucentini L (2017) First evidence of MC-HtyR associated to a Plankthothrix rubescens blooming in an Italian lake based on a LC-MS method for routinely analysis of twelve microcystins in freshwaters. Microchem J 130:329–335. https://doi.org/10.1016/j.microc.2016.10.012

    Article  CAS  Google Scholar 

  72. Kaloudis T, Zervou SK, Tsimeli K, Triantis TM, Fotiou T, Hiskia A (2013) Determination of microcystins and nodularin (cyanobacterial toxins) in water by LC-MS/MS. Monitoring of Lake Marathonas, a water reservoir of Athens. Greece J Hazard Mater 263:105–115. https://doi.org/10.1016/j.jhazmat.2013.07.036

    Article  PubMed  CAS  Google Scholar 

  73. Mariani MA, Lai GG, Padedda BM, Pulina S, Sechi N, Virdis T, Lugliè A (2015) Long-term ecological studies on phytoplankton in Mediterranean reservoirs: a case study from Sardinia (Italy). Inland Waters 5(4):339–354. https://doi.org/10.5268/IW-5.4.868

    Article  Google Scholar 

  74. Gregor J, Maršálek B, Šípková H (2007) Detection and estimation of potentially toxic cyanobacteria in raw water at the drinking water treatment plant by in vivo fluorescence method. Water Res 41(1):228–234. https://doi.org/10.1016/j.watres.2006.08.011

    Article  PubMed  CAS  Google Scholar 

  75. Bláhová L, Babica P, Maršálková E, Maršálek B, Bláha L (2007) Concentrations and seasonal trends of extracellular microcystins in freshwaters of the Czech Republic–results of the national monitoring program. CLEAN–Soil, Air, Water 35(4):348–54. https://doi.org/10.1002/clen.200700010

    Article  CAS  Google Scholar 

  76. Cook CM, Vardaka E, Lanaras T (2004) Toxic cyanobacteria in Greek freshwaters, 1987–2000: Occurrence, toxicity, and impacts in the Mediterranean region. Acta Hydrochim Hydrobiol 32(2):107–124. https://doi.org/10.1002/aheh.200300523

    Article  CAS  Google Scholar 

  77. Kabziński AKM, Juszczak R, Miȩkoś E, Tarczyńska M, Sivonen K, Rapala J (2000) The first report about the presence of cyanobacterial toxins in Polish Lakes. Pol J Environ Stud 9(3):171–178

    Google Scholar 

  78. Matteson AR, Graves AK, Hall AM, Kuy D, Polizzotto ML (2016) Fecal contamination and Microcystis in drinking-water sources of rural Cambodia using PCR and culture-based methods. J Water Sanit Hyg Dev 6(3):353–361. https://doi.org/10.2166/washdev.2016.136

    Article  Google Scholar 

  79. Ren Y, Liu Y, Hu W, Hao D, Pei H, Tian C, Wei J, Feng Y (2016) Seasonal pattern of cyanobacteria community and its relationship with environmental factors: a case study in Luoma Lake. East China Desalin Water Treat 57(15):6658–6669. https://doi.org/10.1080/19443994.2015.1015450

    Article  CAS  Google Scholar 

  80. Su M, Yu J, Zhang J, Chen H, An W, Vogt RD, Andersen T, Jia D, Wang J, Yang M (2015) MIB-producing cyanobacteria (Planktothrix sp.) in a drinking water reservoir: distribution and odor producing potential. Water Res 68:444–453. https://doi.org/10.1016/j.watres.2014.09.038

    Article  PubMed  CAS  Google Scholar 

  81. Yang Z, Kong F, Zhang M (2016) Groundwater contamination by microcystin from toxic cyanobacteria blooms in Lake Chaohu. China Environ Monit Assess 188(5):1–9. https://doi.org/10.1007/s10661-016-5289-0

    Article  CAS  Google Scholar 

  82. Yu L, Kong F, Zhang M, Yang Z, Shi X, Du M (2014) The dynamics of microcystis genotypes and microcystin production and associations with environmental factors during blooms in lake Chaohu. China Toxins 6(12):3238–3257. https://doi.org/10.3390/toxins6123238

    Article  PubMed  CAS  Google Scholar 

  83. Yang H, Xie P, Xu J, Zheng L, Deng D, Zhou Q, Wu S (2006) Seasonal variation of microcystin concentration in Lake Chaohu, a shallow subtropical lake in the People’s Republic of China. Bull Environ Contam Toxicol 77:367–374. https://doi.org/10.1007/s00128-006-1075-y

    Article  PubMed  CAS  Google Scholar 

  84. Qin B, Zhu G, Gao G, Zhang Y, Li W, Paerl HW, Carmichael WW (2010) A drinking water crisis in Lake Taihu, China: linkage to climatic variability and lake management. Environ Manag 45:105–112. https://doi.org/10.1007/s00267-009-9393-6

    Article  Google Scholar 

  85. Zhang D, Liao Q, Zhang L, Wang D, Luo L, Chen Y, Zhong J, Liu J (2015) Occurrence and spatial distributions of microcystins in Poyang Lake, the largest freshwater lake in China. Ecotoxicol 24:19–28. https://doi.org/10.1007/s10646-014-1349-9

    Article  CAS  Google Scholar 

  86. Wu Y, Li L, Gan N, Zheng L, Ma H, Shan K, Liu J, Xiao B, Song L (2014) Seasonal dynamics of water bloom-forming Microcystis morphospecies and the associated extracellular microcystin concentrations in large, shallow, eutrophic Dianchi Lake. J Environ Sci 26(9):1921–1929. https://doi.org/10.1016/j.jes.2014.06.031

    Article  Google Scholar 

  87. Ebrahimzadeh G, Alimohammadi M, Kahkah MRR, Mahvi AH (2021) Relationship between algae diversity and water quality- a case study: Chah Niemeh reservoir Southeast of Iran. J Environ Health Sci Eng 19(1):437–443. https://doi.org/10.1007/s40201-021-00616-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Ratnayake N, Manatunge J, Hapuarachchi DP (2012) Dealing with algal toxins and dissolved organics in drinking water. J Hazard Toxic Radioact Waste 16(2):118–124. https://doi.org/10.1061/(asce)hz.2153-5515.0000114

    Article  CAS  Google Scholar 

  89. Yen HK, Lin TF, Tseng IC, Su YT (2006) Cyanobacteria toxins and toxin producers in nine drinking water reservoirs in Taiwan. Water Sci Technol: Water Supply 6(2):161–167. https://doi.org/10.2166/ws.2006.065

    Article  CAS  Google Scholar 

  90. Ahmad NA, Sinang SC (2024) Using phycocyanin as cyanobacterial biomass indicator to determine potentially- toxic bloom: An example from a Malaysia reservoir. EnvironmentAsia 17(3):116–130. https://doi.org/10.14456/ea.2024.40

    Article  Google Scholar 

  91. Mohamed ZA (2016) Breakthrough of Oscillatoria limnetica and microcystin toxins into drinking water treatment plants-examples from the Nile River. Egypt Water SA 42(1):161–165

    Article  CAS  Google Scholar 

  92. Mchau GJ, Machunda R, Kimanya M, Makule E, Gong YY, Mpolya E, Meneely JP, Elliott CT, Greer B (2021) First report of the co-occurrence of cylindrospermopsin, nodularin and microcystins in the freshwaters of Lake Victoria. Tanzania Expo Health 13(2):185–194. https://doi.org/10.1007/s12403-020-00372-7

    Article  CAS  Google Scholar 

  93. Mchau GJ, Makule E, Machunda R, Gong YY, Kimanya M (2019) Harmful algal bloom and associated health risks among users of Lake Victoria freshwater: Ukerewe Island. Tanzania J Water Health 17(5):826–836. https://doi.org/10.2166/wh.2019.083

    Article  PubMed  Google Scholar 

  94. Chia AM, Abolude DS, Ladan Z, Akanbi O, Kalaboms A (2009) The Presence of microcystins in aquatic ecosystems in Northern Nigeria: Zaria as a case study. Res J Environ Toxicol 3(4):170–178

    Article  Google Scholar 

  95. Douma M, Ouahid Y, Campo FFD, Loudiki M, Mouhri K, Oudra B (2010) Identification and quantification of cyanobacterial toxins (microcystins) in two Moroccan drinking-water reservoirs (Mansour Eddahbi, Almassira). Environ Monit Assess 160(1–4):439–450. https://doi.org/10.1007/s10661-008-0708-5

    Article  PubMed  CAS  Google Scholar 

  96. Addico GNDH, Komárek J, Degraft-Johnson KAA (2009) Cyanobacterial diversity and biomass in relation to nutrient regime of four freshwater reservoirs sourced for the production of drinking water in Ghana. Algol Stud 130:81–108. https://doi.org/10.1127/1864-1318/2009/0130-0081

    Article  Google Scholar 

  97. Nasri AB, Bouaïcha N, Fastner J (2004) First report of a microcystin-containing bloom of the cyanobacteria Microcystis spp. in Lake Oubeira Eastern Algeria. Arch Environ Contam Toxicol 46(2):197–202. https://doi.org/10.1007/s00244-003-2283-7

    Article  PubMed  CAS  Google Scholar 

  98. Recknagel F, Orr PT, Bartkow M, Swanepoel A, Cao H (2017) Early warning of limit-exceeding concentrations of cyanobacteria and cyanotoxins in drinking water reservoirs by inferential modelling. Harmful Algae 69:18–27. https://doi.org/10.1016/j.hal.2017.09.003

    Article  PubMed  CAS  Google Scholar 

  99. Forastier ME, Zalocar Y, Andrinolo D, Domitrovic HA (2016) Occurrence and toxicity of Microcystis aeruginosa (Cyanobacteria) in the Paraná River, downstream of the Yacyretá dam (Argentina). Rev Biol Trop 64(1):203–211. https://doi.org/10.15517/rbt.v64i1.8993

    Article  PubMed  Google Scholar 

  100. Ruiz M, Galanti L, Ruibal AL, Rodriguez MI, Wunderlin DA, Amé MV (2013) First report of microcystins and anatoxin-a co-occurrence in San Roque reservoir (Córdoba, Argentina). Water Air Soil Pollut. https://doi.org/10.1007/s11270-013-1593-2

    Article  Google Scholar 

  101. Freitas DA, Cabral JJSP, Paiva ALR, Molica RJR (2012) Application of bank filtration technology for water quality improvement in a warm climate: A case study at Beberibe River in Brazil. J Water Supply: Res Technol––AQUA 61(5):319–330. https://doi.org/10.2166/aqua.2012.097

    Article  CAS  Google Scholar 

  102. Vieira JMDS, Azevedo MTDP, De Oliveira Azevedo SMF, Honda RY, Corrêa B (2005) Toxic cyanobacteria and microcystin concentrations in a public water supply reservoir in the Brazilian Amazonia region. Toxicon 45(7):901–909. https://doi.org/10.1016/j.toxicon.2005.02.008

    Article  CAS  Google Scholar 

  103. Tito JCR, Luna LMG, Noppe WN, Hubert I (2022) First report on microcystin-LR occurrence in water reservoirs of Eastern Cuba, and environmental trigger factors. Toxins 14:1–18. https://doi.org/10.3390/toxins14030209

    Article  CAS  Google Scholar 

  104. Erratt KJ, Creed IF, Freeman EC, Trick CG, Westrick J, Birbeck JA, Watson LC, Zastepa A (2022) Deep cyanobacteria layers: An overlooked aspect of managing risks of cyanobacteria. Environ Sci Technol 56(24):17902–17912. https://doi.org/10.1021/acs.est.2c06928

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Michalak AM, Anderson EJ, Beletsky D, Boland S, Bosch NS, Bridgeman TB, Chaffin JD, Cho K, Confesor R, Daloglu I, DePinto JV, Evans MA, Fahnenstiel GL, He L, Ho JC, Jenkins L, Johengen TH, Kuo KC, LaPorte E, Liu X, McWilliams MR, Moore MR, Posselt DJ, Richards RP, Scavia D, Steiner AL, Verhamme E, Wright DM, Zagorski MA (2013) Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with expected future conditions. PNAS USA 110(16):6448–6452. https://doi.org/10.1073/pnas.1216006110

    Article  PubMed  PubMed Central  Google Scholar 

  106. Stumpf RP, Wynne TT, Baker DB, Fahnenstiel GL (2012) Interannual variability of cyanobacterial blooms in Lake Erie. https://doi.org/10.1371/journal.pone.0042444

  107. Vasconcelos V, Martins A, Vale M, Antunes A, Azevedo J, Welker M, Lopez O, Montejano G (2010) First report on the occurrence of microcystins in planktonic cyanobacteria from Central Mexico. Toxicon 56(3):425–431. https://doi.org/10.1016/j.toxicon.2010.04.011

    Article  PubMed  CAS  Google Scholar 

  108. Carey CC, Haney JF, Cottingham KL (2007) First report of microcystin-LR in the cyanobacterium Gloeotrichia echinulata Cayelan. Environ Toxicol: An Int J 22(3):337–339. https://doi.org/10.1002/tox.20245

    Article  CAS  Google Scholar 

  109. Lehman EM (2007) Seasonal occurrence and toxicity of Microcystis in impoundments of the Huron River, Michigan, USA. Water Res 41(4):795–802. https://doi.org/10.1016/j.watres.2006.09.030

    Article  PubMed  CAS  Google Scholar 

  110. Melaram R, Lopez-Dueñas B (2022) Detection and occurrence of microcystins and nodularins in Lake Manatee and Lake Washington-two Floridian drinking water systems. Front Water 4:1–11. https://doi.org/10.3389/frwa.2022.899572

    Article  Google Scholar 

  111. Rousso BZ, Bertone E, Stewart RA, Hughes SP, Hobson P, Hamilton DP (2022) Cyanobacteria species dominance and diversity in three Australian drinking water reservoirs. Hydrobiologia 849(6):1453–1469. https://doi.org/10.1007/s10750-021-04794-5

    Article  CAS  Google Scholar 

  112. Gaget V, Humpage AR, Huang Q, Monis P, Brookes JD (2017) Benthic cyanobacteria: A source of cylindrospermopsin and microcystin in Australian drinking water reservoirs. Water Res 124:454–464. https://doi.org/10.1016/j.watres.2017.07.073

    Article  PubMed  CAS  Google Scholar 

  113. Trout-Haney JV, Wood ZT, Cottingham KL (2016) Presence of the cyanotoxin microcystin in Arctic lakes of Southwestern Greenland. Toxins 8(9):20–24. https://doi.org/10.3390/toxins8090256

    Article  CAS  Google Scholar 

  114. Wu JT, Hsu YB, Kow LC (2015) Resilience of a phytoplankton community after disturbance in a subtropical reservoir: a case study in Feitsui Reservoir. Taiwan Ecol Indic 52:284–291. https://doi.org/10.1016/j.ecolind.2014.12.007

    Article  Google Scholar 

  115. Bouaïcha N, Miles CO, Beach DG, Labidi Z, Djabri A, Benayache NY, Nguyen-Quang T (2019) Structural diversity, characterization and toxicology of microcystins. Toxins 11(12):714. https://doi.org/10.3390/toxins11120714

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Beversdorf LJ, Rude K, Weirich CA, Bartlett SL, Seaman M, Kozik C, Biese P, Gosz T, Suha M, Stempa C, Shaw C, Hedman C, Piatt JJ, Miller TR (2018) Analysis of cyanobacterial metabolites in surface and raw drinking waters reveals more than microcystin. Water Res 140:280–290. https://doi.org/10.1016/j.watres.2018.04.032

    Article  PubMed  CAS  Google Scholar 

  117. Paerl HW, Havens KE, Xu H, Zhu G, McCarthy MJ, Newell SE, Scott JT, Hall NS, Otten TG, Qin B (2020) Mitigating eutrophication and toxic cyanobacterial blooms in large lakes: the evolution of a dual nutrient (N and P) reduction paradigm. Hydrobiologia 847:4359–4375. https://doi.org/10.1007/s10750-019-04087-y

    Article  CAS  Google Scholar 

  118. Adams H, Smith SA, Reeder S, Appleton E, Leinweber B, Forbes S, Barrowman P, Ford G, Ikehata K, Southard M (2022) Characterizing and mitigating cyanobacterial blooms in drinking water reservoirs. J AWWA 4(4):26–38. https://doi.org/10.1002/awwa.1901

    Article  Google Scholar 

  119. Igwaran A, Kayode AJ, Moloantoa KM, Khetsha ZP, Unuofin JO (2024) Cyanobacteria harmful algae blooms: causes, impacts, and risk management. Water Air Soil Pollut 5(1):71. https://doi.org/10.1007/s11270-023-06782-y

    Article  CAS  Google Scholar 

  120. Reichwaldt ES, Stone D, Barrington DJ, Sinang SC, Ghadouani A (2016) Development of toxicological risk assessment models for acute and chronic exposure to pollutants. Toxins 8(9):251. https://doi.org/10.3390/toxins8090251

    Article  PubMed  PubMed Central  Google Scholar 

  121. Moldaenke C, Fang Y, Yang F, Dahlhaus A (2019) Early warning method for cyanobacteria toxin, taste and odor problems by the evaluation of fluorescence signals. Sci Total Environ 667:681–690. https://doi.org/10.1016/j.scitotenv.2019.02.271

    Article  PubMed  CAS  Google Scholar 

  122. Van Rensburg SJ, Barnard S, Krüger M (2016) Challenges in the potable water industry due to changes in source water quality: case study of midvaal water company. South Africa Water SA 42(4):633–640. https://doi.org/10.4314/wsa.v42i4.14

    Article  CAS  Google Scholar 

  123. Veal CJ, Neelamraju C, Wolff T, Watkinson A, Shillito D, Canning A (2018) Managing cyanobacterial toxin risks to recreational users: a case study of inland lakes in South East Queensland. Water Sci Technol: Water Supply 18(5):1719–1726. https://doi.org/10.2166/ws.2017.233

    Article  CAS  Google Scholar 

  124. Zhang R, Qi F, Liu C, Zhang Y, Wang Y, Song Z, Kumirska J, Sun D (2019) Cyanobacteria derived taste and odor characteristics in various lakes in China: Songhua Lake, Chaohu Lake and Taihu Lake. Ecotoxicol Environ Saf 181:499–507. https://doi.org/10.1016/j.ecoenv.2019.06.046

    Article  PubMed  CAS  Google Scholar 

  125. Kusumawati DI, Mangkoedihardjo S (2021) Problems and use of cyanobacteria for environmental improvement–A. J Arid Agri 7:9–14. https://doi.org/10.25081/jaa.2021.v7.6664

    Article  Google Scholar 

  126. Thomson-Laing G, Puddick J, Wood SA (2020) Predicting cyanobacterial biovolumes from phycocyanin fluorescence using a handheld fluorometer in the field. Harmful Algae 97:101869. https://doi.org/10.1016/j.hal.2020.101869

    Article  PubMed  CAS  Google Scholar 

  127. Tebbs EJ, Remedios JJ, Harper DM (2013) Remote sensing of chlorophyll-a as a measure of cyanobacterial biomass in Lake Bogoria, a hypertrophic, saline–alkaline, flamingo lake, using Landsat ETM+. Remote Sens Environ 135:92–106. https://doi.org/10.1016/j.rse.2013.03.024

    Article  Google Scholar 

  128. Ma L, Dorner S, Prévost M (2024) Evidence-based framework to use in situ phycocyanin readings for cyanobacterial risk assessment within drinking water treatment plants. Environ Sci: Water Res Technol 10(3):688–701. https://doi.org/10.1039/D3EW00922J

    Article  CAS  Google Scholar 

  129. Stumpf RP, Davis TW, Wynne TT, Graham JL, Loftin KA, Johengen TH, Gossiaux D, Palladino D, Burtner A (2016) Challenges for mapping cyanotoxin patterns from remote sensing of cyanobacteria. Harmful Algae 54:160–173. https://doi.org/10.1016/j.hal.2016.01.005

    Article  PubMed  CAS  Google Scholar 

  130. Mishra S, Stumpf RP, Schaeffer BA, Werdell PJ, Loftin KA, Meredith A (2019) Measurement of cyanobacterial bloom magnitude using satellite remote sensing. Sci Rep 9(1):18310. https://doi.org/10.1038/s41598-019-54453-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Coffer MM, Schaeffer BA, Salls WB, Urquhart E, Loftin KA, Stumpf RP, Werdell PJ, Darling JA (2021) Satellite remote sensing to assess cyanobacterial bloom frequency across the United States at multiple spatial scales. Ecol Indic 128:107822. https://doi.org/10.1016/j.ecolind.2021.107822

    Article  Google Scholar 

  132. Kibuye FA, Zamyadi A, Wert EC (2021) A critical review on operation and performance of source water control strategies for cyanobacterial blooms: part I-chemical control methods. Harmful Algae 109:102099

    Article  PubMed  Google Scholar 

  133. Wang S, Wang Y, Wang Y, Wang Z (2022) Assessment of influencing factors on non-point source pollution critical source areas in an agricultural watershed. Ecol Indic 141:109084. https://doi.org/10.1016/j.ecolind.2022.109084

    Article  CAS  Google Scholar 

  134. Sabo RD, Sullivan B, Wu C, Trentacoste E, Zhang Q, Shenk GW, Bhatt G, Linker LC (2022) Major point and nonpoint sources of nutrient pollution to surface water have declined throughout the Chesapeake Bay watershed. Environ Res Comm 4(4):045012. https://doi.org/10.1088/2515-7620/ac5db6

    Article  Google Scholar 

  135. Sukenik A, Kaplan A (2021) Cyanobacterial harmful algal blooms in aquatic ecosystems: a comprehensive outlook on current and emerging mitigation and control approaches. Microorganisms 9(7):1472. https://doi.org/10.3390/microorganisms9071472

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Kibuye FA, Zamyadi A, Wert EC (2021) A critical review on operation and performance of source water control strategies for cyanobacterial blooms: part II-mechanical and biological control methods. Harmful Algae 109:102119. https://doi.org/10.1016/j.hal.2021.102119

    Article  PubMed  CAS  Google Scholar 

  137. Park CB, Baik S, Kim S, Choi JW, Lee SH, Kim YJ (2017) The use of ultrasonic frequencies to control the bloom formation, regrowth, and eco-toxicity in Microcystis aeruginosa. Int J Environ Sci Technol 14:923–932. https://doi.org/10.1007/s13762-016-1224-8

    Article  CAS  Google Scholar 

  138. Lusty MW, Gobler CJ (2020) The efficacy of hydrogen peroxide in mitigating cyanobacterial blooms and altering microbial communities across four lakes in NY, USA. Toxin 12:428. https://doi.org/10.3390/toxins12070428

    Article  CAS  Google Scholar 

  139. Balaji-Prasath B, Wang Y, Su YP, Hamilton DP, Lin H, Zheng L, Zhang Y (2022) Methods to control harmful algal blooms: a review. Environ Chem Lett 20(5):3133–3152. https://doi.org/10.1007/s10311-022-01457-2

    Article  CAS  Google Scholar 

  140. Pal M, Yesankar PJ, Dwivedi A, Qureshi A (2020) Biotic control of harmful algal blooms (HABs): a brief review. J Environ Manag 268:110687. https://doi.org/10.1016/j.jenvman.2020.110687

    Article  CAS  Google Scholar 

  141. Jiang X, Ha C, Lee S, Kwon J, Cho H, Gorham T, Lee J (2019) Characterization of cyanophages in Lake Erie: interaction mechanisms and structural damage of toxic cyanobacteria. Toxins 11(8):444. https://doi.org/10.3390/toxins11080444

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Jia Y, Han G, Wang C, Guo P, Jiang W, Li X, Tian X (2010) The efficacy and mechanisms of fungal suppression of freshwater harmful algal bloom species. J Hazard Mater 183(1–3):176–181. https://doi.org/10.1016/j.jhazmat.2010.07.009

    Article  PubMed  CAS  Google Scholar 

  143. Zhang D, Ye Q, Zhang F, Shao X, Fan Y, Zhu X, Li Y, Yao L, Tian Y, Zheng T, Xu H (2019) Flocculating properties and potential of Halobacillus sp. strain H9 for the mitigation of Microcystis aeruginosa blooms. Chemosphere 218:138–146. https://doi.org/10.1016/j.chemosphere.2018.11.082

    Article  PubMed  CAS  Google Scholar 

  144. Urrutia-Cordero P, Ekvall MK, Hansson LA (2015) Responses of cyanobacteria to herbivorous zooplankton across predator regimes: who mows the bloom? Freshw Biol 60(5):960–972. https://doi.org/10.1111/fwb.12555

    Article  Google Scholar 

  145. Görgényi J, Boros G, Vitál Z, Mozsár A, Várbíró G, Vasas G, Borics G (2016) The role of filter-feeding Asian carps in algal dispersion. Hydrobiologia 764:115–126. https://doi.org/10.1007/s10750-015-2285-2

    Article  Google Scholar 

  146. Almuhtaram H, Cui Y, Zamyadi A, Hofmann R (2018) Cyanotoxins and cyanobacteria cell accumulations in drinking water treatment plants with a low risk of bloom formation at the source. Toxins 10(11):430. https://doi.org/10.3390/toxins10110430

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Huang Y, Lenhart JJ (2024) The dependence in microcystin removal with powdered activated carbon on variant properties, carbon properties, and dissolved organic matter. Chemosphere 351:141205. https://doi.org/10.1016/j.chemosphere.2024.141205

    Article  PubMed  CAS  Google Scholar 

  148. Gaget V, Lau M, Sendall B, Froscio S, Humpage AR (2017) Cyanotoxins: which detection technique for an optimum risk assessment? Water Res 118:227–238. https://doi.org/10.1016/j.watres.2017.04.025

    Article  PubMed  CAS  Google Scholar 

  149. Mezzanotte V, Bresciani M, Canobbio S, Giardino C, Antonelli M, Bortoluzzi A, Foltran F, Panizza A, Pietrosanti A, Ren YM, De Biase L, Nurizzo C (2011) Monitoring, environmental emergencies management and water treatment improvement of freshwater lakes in China: the Chao Lake case study. Water Sci Technol: Water Supply 11(4):490–496. https://doi.org/10.2166/ws.2011.071

    Article  Google Scholar 

  150. Foreman K, Vacs Renwick D, McCabe M, Cadwallader A, Holsinger H, Kormondy C, Albert R (2021) Effects of harmful algal blooms on regulated disinfection byproducts: findings from five utility case studies. AWWA Water Sci 3(3):1–21. https://doi.org/10.1002/aws2.1223

    Article  Google Scholar 

  151. Kohler E, Villiger J, Posch T, Derlon N, Shabarova T, Morgenroth E, Pernthaler J, Blom JF (2014) Biodegradation of microcystins during gravity-driven membrane (GDM) ultrafiltration. PLoS One 9(11):111794. https://doi.org/10.1371/journal.pone.0111794

    Article  CAS  Google Scholar 

  152. Qu F, Liang H, Zhou J, Nan J, Shao S, Zhang J, Li G (2014) Ultrafiltration membrane fouling caused by extracellular organic matter (EOM) from Microcystis aeruginosa: effects of membrane pore size and surface hydrophobicity. J Membr Sci 449:58–66. https://doi.org/10.1016/j.memsci.2013.07.070

    Article  CAS  Google Scholar 

  153. Seo C, Lee JW, Jung WK, Lee YM, Lee S, Lee SG (2022) Examination of microcystin adsorption by the type of plastic materials used during the procedure of microcystin analysis. Toxins 14(9):625. https://doi.org/10.3390/toxins14090625

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Xin H, Yang S, Tang Y, Wu M, Deng Y, Xu B, Gao N (2020) Mechanisms and performance of calcium peroxide-enhanced Fe (II) coagulation for treatment of Microcystis aeruginosa-laden water. Environ Sci: Water Res Technol 6(5):1272–1285. https://doi.org/10.1039/D0EW00005A

    Article  CAS  Google Scholar 

  155. Kumar P, Rehab H, Hegde K, Brar SK, Cledon M, Kermanshahi-pour A, Vo Duy S, Sauvé S, Surampalli RY (2020) Physical and biological removal of Microcystin-LR and other water contaminants in a biofilter using manganese dioxide coated sand and graphene sand composites. Sci Total Environ 703:135052. https://doi.org/10.1016/j.scitotenv.2019.135052

    Article  PubMed  CAS  Google Scholar 

  156. Lin JL, Ika AR (2022) Pre-oxidation of Microcystis aeruginosa-laden water by intensified chlorination: impact of growth phase on cell degradation and in-situ formation of carbonaceous disinfection by-products. Sci Total Environ 805:150285. https://doi.org/10.1016/j.scitotenv.2021.150285

    Article  PubMed  CAS  Google Scholar 

  157. Bai M, Zheng Q, Zheng W, Li H, Lin S, Huang L, Zhang Z (2019) •OH inactivation of cyanobacterial blooms and degradation of toxins in drinking water treatment system. Water Res 154:144–152. https://doi.org/10.1016/j.watres.2019.02.002

    Article  PubMed  CAS  Google Scholar 

  158. Li H, Bai M, Yang X, Zhong Z, Gao M, Tian Y (2019) [rad]OH pre-treatment of algae blooms and degradation of microcystin-LR in a drinking water system of 480 m3/day: Comparison with ClO2. Chem Eng J 367:189–197. https://doi.org/10.1016/j.cej.2019.02.143

    Article  CAS  Google Scholar 

  159. Sun J, Bu L, Deng L, Shi Z, Zhou S (2018) Removal of Microcystis aeruginosa by UV/chlorine process: Inactivation mechanism and microcystins degradation. Chem Eng J 349:408–415. https://doi.org/10.1016/j.cej.2018.05.116

    Article  CAS  Google Scholar 

  160. Krishnan A, Zhang Y, Balaban M, Seo Y, Mou X (2020) Taxonomic and genotypical heterogeneity of microcystin degrading bacterioplankton in Western Lake Erie. Harmful Algae 98:101895. https://doi.org/10.1016/j.hal.2020.101895

    Article  PubMed  CAS  Google Scholar 

  161. Moron-Lopez J, Molina S (2019) Optimization of recycled-membrane biofilm reactor (R-MBfR) as a sustainable biological treatment for microcystins removal. Biochem Eng J 153:107422. https://doi.org/10.1016/j.bej.2019.107422

    Article  CAS  Google Scholar 

  162. Wang R, Li J, Li J (2020) Functional and structural analyses for MlrC enzyme of Novosphingobium sp. THN1 in microcystin-biodegradation: Involving optimized heterologous expression, bioinformatics, and site-directed mutagenesis. Chemosphere 255:126906. https://doi.org/10.1016/j.chemosphere.2020.126906

    Article  PubMed  CAS  Google Scholar 

  163. Van Hien N, Valsami-Jones E, Vinh NC, Phu TT, Tam NTT, Lynch I (2020) Effectiveness of different biochar in aqueous zinc removal: correlation with physicochemical characteristics. Bioresour Technol Rep 11:100466. https://doi.org/10.1016/j.biteb.2020.100466

    Article  Google Scholar 

  164. Ho L, Lambling P, Bustamante H, Duker P, Newcombe G (2011) Application of powdered activated carbon for the adsorption of cylindrospermopsin and microcystin toxins from drinking water supplies. Water Res 45(9):2954–2964. https://doi.org/10.1016/j.watres.2011.03.014

    Article  PubMed  CAS  Google Scholar 

  165. Li A, Deng H, Wu Y, Ye C, Jiang Y (2021) Strong adsorption of phosphorus by ZnAl-LDO-activated banana biochar: an analysis of adsorption efficiency, thermodynamics, and internal mechanisms. ACS Omega 6(11):7402–7412. https://doi.org/10.1021/acsomega.0c05674

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Pavagadhi S, Tang ALL, Sathishkumar M, Loh KP, Balasubramanian R (2013) Removal of microcystin-LR and microcystin-RR by graphene oxide: adsorption and kinetic experiments. Water Res 47(13):4621–4629. https://doi.org/10.1016/j.watres.2013.04.033

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the Ministry of Higher Education Malaysia under Fundamental Research Grant Scheme (FRGS/1/2021/STG03/UPSI/02/1). We would like to thank everyone who was directly or indirectly involved in this review article.

Author information

Authors and Affiliations

Authors

Contributions

N.A.A. and S.C.S. collected the data, performed the analysis, and wrote the original manuscript draft. S.H. and A.R.A. performed data analysis and structured the manuscript. All authors agreed and collaboratively reviewed the manuscript.

Corresponding author

Correspondence to Som Cit Sinang.

Ethics declarations

Conflict of interest

Nurul Awatif Ahmad, Som Cit Sinang, Amy Rose Aeriyanie A Rahman, and Haihong Song declare that they have no conflict of interest.

Ethical approval

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, N.A., Sinang, S.C., Rahman, A.R.A.A. et al. Cyanobacteria and microcystins contamination in drinking water sources: a review of occurrence, exposure, and mitigation measures. Toxicol. Environ. Health Sci. (2024). https://doi.org/10.1007/s13530-024-00239-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13530-024-00239-3

Keywords