Abstract
Salt marshes of the northeastern United States are dynamic landscapes where the tidal flooding regime creates patterns of plant zonation based on differences in elevation, salinity, and local hydrology. These patterns of zonation can change quickly due to both natural and anthropogenic stressors, making tidal marshes vulnerable to degradation and loss. We compared several remote sensing techniques to develop a tool that accurately maps high- and low-marsh zonation to use in management and conservation planning for this ecosystem in the northeast USA. We found that random forests (RF) outperformed other classifier tools when applied to the most recent National Agricultural Imagery Program (NAIP) imagery, NAIP derivatives, and elevation data between coastal Maine and Virginia, USA. We then used RF methods to classify plant zonation within a 500-m buffer around coastal marsh delineated in the National Wetland Inventory. We found mean classification accuracies of 94% for high marsh, 76% for low marsh zones, and 90% overall map accuracy. The detailed output is a 3-m resolution continuous map of tidal marsh vegetation communities and cover classes that can be used in habitat modeling of marsh-obligate species or to monitor changes in marsh plant communities over time.
Similar content being viewed by others
References
Adam E, Mutanga O, Rugege D (2010) Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: a review. Wetl Ecol Manag 18(3):281–296
Arkema KK, Guannel G, Verutes G, Wood SA, Guerry A, Ruckelshaus M, Kareiva P, Lacayo M, Silver JM (2013) Coastal habitats shield people and property from sea-level rise and storms. Nat Clim Chang 3:913–918
Baker B, Warner T, Conley JF, McNeil BE (2013) Does spatial resolution matter? A multi-scale comparison of object-based and pixel-based methods for detecting change associated with gas well drilling operations. Int J Remote Sens 34(5):1633–1651
Barbier EB, Hacker SD, Kennedy C, Koch EW, Stier AC, Silliman BR (2011) The value of estuarine and coastal ecosystem services. Ecol Monogr 81(2):169–193
Belgiu and Dragut (2016) Random forest in remote sensing: a review of applications and future directions. ISPRS J Photogramm Remote Sens 114:24–31
Belluco E, Camuffo M, Ferrari S, Modenese L, Silvestri S, Marani A, Marani M (2006) Mapping salt-marsh vegetation by multispectral and hyperspectral remote sensing. Remote Sens Environ 105(1):54–67
Bertness MD (1991) Zonation of Spartina Patens and Spartina Alterniflora in New England salt marsh. Ecology 72(1):138–148
Bertness MD, Ellison AM (1987) Determinants of pattern in a New England salt marsh plant community. Ecol Monogr 57(2):129–147
Bertness MD, Ewanchuk PJ, Silliman BR (2002) Anthropogenic modification of New England salt marsh landscapes. Proc Natl Acad Sci U S A 99(3):1395–1398
Boesch DF, Turner RE (1984) Dependence of fishery species on salt marshes: the role of food and refuge. Estuaries 7(4):460
Bourgeau-Chavez L, Endres S, Battaglia M, Miller ME, Banda E, Laubach Z, Marcaccio J (2015) Development of a bi-national Great Lakes coastal wetland and land use map using three-season PALSAR and Landsat imagery. Remote Sens 7(7):8655–8682
Breiman L (2001) Random forests. Mach Learn 45(1):5–32
Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and regression trees. The Wadsworth Statistics Probability Series (Vol. 19)
Brown S, Harrington B, Parsons K, Mallory E (2002) Waterbird use of northern Atlantic wetlands protected under the north American wetlands conservation act. Waterbirds 25:106–114
Chambers RM, Meyerson LA, Saltonstall K (1999) Expansion of Phragmites australis into tidal wetlands of North America. Aquat Bot 64(3–4):261–273
Chu-Agor ML, Muñoz-Carpena R, Kiker G, Emanuelsson A, Linkov I (2011) Exploring vulnerability of coastal habitats to sea level rise through global sensitivity and uncertainty analyses. Environ Model Softw 26(5):593–604
Correll MD (2015) The biogeography and conservation of tidal marsh bird communities across a changing landscape. Dissertation, University of Maine, Orono Maine USA
Correll MD, Wiest WA, Hodgman TP, Shriver WG, Elphick CS, McGill BJ, O'Brien K, Olsen BJ (2017) Predictors of specialist avifaunal decline in coastal marshes. Conserv Biol 31(1):172–182
Crosby SC, Sax DF, Palmer ME, Booth HS, Deegan LA, Bertness MD, Leslie HM (2016) Salt marsh persistence is threatened by predicted sea-level rise. Estuar Coast Shelf Sci 181:93–99
Davies KW, Petersen SL, Johnson DD, Davis DB, Madsen MD, Zvirzdin DL, Bates JD (2010) Estimating juniper cover from National Agriculture Imagery Program (NAIP) imagery and evaluating relationships between potential cover and environmental variables. Rangel Ecol Manag 63(6):630–637
Day JW, Christian RR, Boesch DM, Yáñez-Arancibia A, Morris J, Twilley RR, Stevenson C (2008) Consequences of climate change on the ecogeomorphology of coastal wetlands. Estuar Coasts 31(3):477–491
Dimitriadou E, Hornik K, Leisch F, Meyer D (2006) e1071: Misc functions of the Department of Statistics, probability theory group (formerly E1071), TU Wien. R package version 1.6–8. https://CRAN.R-project.org/package=e1071
Donnelly JP, Bertness MD (2001) Rapid shoreward encroachment of salt marsh cordgrass in response to accelerated sea-level rise. Proc Natl Acad Sci 98(25):14218–14223
Dreyer GD, Niering WA (1995) Tidal marshes of Long Island sound: ecology, history and restoration. Bulletins 34. Connecticut College Digital Commons, New London
Emery NC, Ewanchuk PJ, Bertness MD (2001) Competition and salt-marsh plant zonation: stress tolerators may be dominant competitors. Ecology 82(9):2471–2485
ESRI (2016) ArcGIS desktop: release 10.3. Environmental Systems Research Institute, Redlands
Ewanchuk PJ, Bertness MD (2004) Structure and organization of a northern New England salt marsh plant community. J Ecol 92:72–85
Field CR, Gjerdrum C, Elphick CS (2016) Forest resistance to sea-level rise prevents landward migration of tidal marsh. Biol Conserv 201:363–369
Field CR, Bayard TS, Gjerdrum C, Hill JM, Meiman S, Elphick CS (2017a) High-resolution tide projections reveal extinction threshold in response to sea-level rise. Glob Chang Biol 23(5):2058–2070
Field CR, Dayer AA, Elphick CS (2017b) Landowner behavior can determine the success of conservation strategies for ecosystem migration under sea-level rise. Proc Natl Acad Sci 114:9134–9139
Field CR, Ruskin KJ, Benvenuti B, Borowske A, Cohen JB, Garey L, Hodgman TP, Kern RA, King E, Kocek AR, Kovach AI, O’Brien KM, Olsen BJ, Pau N, Roberts SG, Shelly E, Shriver WG, Walsh J, Elphick CS (2017c) Quantifying the importance of geographic replication and representativeness when estimating demographic rates, using a coastal species as a case study. Ecography 40:001–010
Fry J, Xian G, Jin S, Dewitz J, Homer CG, Yang L, Wickham JD (2011) Completion of the 2006 National Land Cover Database for the conterminous United States. Photogramm Eng Remote Sens 77:858–566
Fung T, Ledrew E (1987) Application of principal components analysis to change detection. Photogrammetric Enginnering and. Remote Sens 53(12):1649–1658
Garrett C (1972) Tidal resonance in the bay of Fundy and gulf of Maine. Nature 238:441–443
Gilmore MS, Wilson EH, Barrett N, Civco DL, Prisloe S, Hurd JD, Chadwick C (2008) Integrating multi-temporal spectral and structural information to map wetland vegetation in a lower Connecticut River tidal marsh. Remote Sens Environ 112(11):4048–4060
Greenberg R, Maldonado JE, Droege S, McDonald MV (2006) Terrestrial vertebrates of tidal marshes: evolution, ecology, and conservation. Stud Avian Biol 32
Hladik C, Schalles J, Alber M (2013) Salt marsh elevation and habitat mapping using hyperspectral and LIDAR data. Remote Sens Environ 139:318–330
Hoover M, Civco D, Whelchel A (2010) The development of a salt marsh migration tool and its application in Long Island sound. ASPRS 2010 Annual Conference Proceedings. San Diego, CA USA
IPCC (2014) Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II, and III to the FIfth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri RK and Meyer LA (eds)]. IPCC, Geneva, Switzerland
Isacch JP, Costa CSB, Rodriguez-Gallego L, Conde D, Escapa M, Gagliardini D, Iribarne OO (2006) Distribution of saltmarsh plant communities associated with environmental factors along a latitudinal gradient on the south-West Atlantic coast. J Biogeogr 33(5):888–900
Jin S, Sader S (2005) Comparison of time series tasseled cap wetness and the normalized difference moisture index in detecting forest disturbances. Remote Sens Environ 94(3):364–372
Kettenring KM, Mock KE, Zaman B, McKee M (2016) Life on the edge: reproductive mode and rate of invasive Phragmites australis patch expansion. Biol Invasions 18(9):2475–2495
Kirwan ML, Guntenspergen GR (2010) Influence of tidal range on the stability of coastal marshland. J Geophys Res 115(F2):1–11
Kirwan ML, Temmerman S, Skeehan EE, Guntenspergen GR, Faghe S (2016) Overestimation of marsh vulnerability to sea level rise. Nat Clim Chang 6(3):253–260
Klemas V (2011) Remote sensing of wetlands: case studies comparing practical techniques. J Coast Res 27(3):418–427
Liaw A, Wiener M (2002) Classification and regression by randomForest. R News 2(3):18–22
Liu C, Jiang H, Hou Y, Zhang S, Su L, Li X, Wen Z (2010) Habitat changes for breeding waterbirds in Yancheng National Nature Reserve, China: a remote sensing study. Wetlands 30(5):879–888
Long AL, Kettenring KM, Hawkins CP, Neale CM (2017) Distribution and drivers of a widespread, invasive wetland grass, Phragmites australis, in wetlands of the great salt Lake, Utah, USA. Wetlands 37(1):45–57
Master TL (1992) Composition, structure, and dynamics of mixed-species foraging aggregations in a southern New Jersey salt marsh. Colon Waterbirds 15(1):66–74
Maxwell AE, Strager MP, Warner TA, Zégre NP, Yuill CB (2014) Comparison of NAIP orthophotography and RapidEye satellite imagery for mapping of mining and mine reclamation. GISci Remote Sens 51(3):301–320
Maxwell AE, Warner TA, Strager MP (2016) Predicting palustrine wetland probability sing random Forest machine learning and digital elevation data-derived terrain variables. Photogramm Eng Remote Sens 82(6):437–447
McFeeters SK (1996) The use of the normalized difference water index (NDWI) in the delineation of open water features. Int J Remote Sens 17(7):1425–1432
Meiman S, Civco D, Holsinger K, Elphick CS (2012) Comparing habitat models using ground-based and remote sensing data: saltmarsh sparrow presence versus nesting. Wetlands 32(4):725–736
Meneguzzo DM, Liknes GC, Nelson MD (2013) Mapping trees outside forests using high-resolution aerial imagery: a comparison of pixel- and object-based classification approaches. Environ Monit Assess 185(8):6261–6275
Miller W, Egler F (1950) Vegetation of the Wequetequock-Pawcatuck tidal-marshes, Connecticut. Ecol Monogr 20(2):143–172
National Oceanic and Atmospheric Administration (2016) Tides and Currents. Available at: https://tidesandcurrents.noaa.gov. Accessed February 2017
Nixon SW, Oviatt CA (1973) Ecology of a New England salt marsh. Ecol Monogr 43(4):463–498
Otukei JR, Blaschke T (2010) Land cover change assessment using decision trees, support vector machines and maximum likelihood classification algorithms. Int J Appl Earth Obs Geoinf 12(1):27–31
Pennings S, Callaway R (1992) Salt marsh plant zonation: the relative importance of competition and physical factors. Ecology 73(2):681–690
Pettorelli N, Vik JO, Mysterud A, Gaillard JM, Tucker CJ, Stenseth NC (2005) Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol Evol 20(9):503–510
Philipp KR, Field RT (2005) Phragmites australis expansion in Delaware Bay salt marshes. Ecol Eng 25(3):275–291
Richardson AJ, Wiegand CL (1977) Distinguishing vegetation from soil background information. Photogramm Eng Remote Sens 43(12):1541–1552
Rosso PH, Ustin SL, Hastings A (2005) Mapping marshland vegetation of San Francisco Bay, California, using hyperspectral data. Int J Remote Sens 26(23):5169–5191
Rouse JW, Haas RH, Schell JA (1974) Monitoring the vernal advancement and retrogradation (greenwave effect) of natural vegetation. Progress Report. NASA Goddard Space Flight Center, College Station Texas, USA
Saltonstall K (2002) Cryptic invasion by a non-native genotype of the common reed, Phragmites australis, into North America. Proc Natl Acad Sci U S A 99(4):2445–2449
Samiappan S, Turnage G, Hathcock L, Casagrande L, Stinson P, Moorhead R (2017) Using unmanned aerial systems for high-resolution remote sensing to map invasive Phragmites australis in coastal wetlands. Int J Remote Sens 38(8–10):2199–2217
Silliman BR, Bertness MD (2004) Shoreline development drives invasion of Phragmites australis and the loss of plant diversity on New England salt marshes. Conserv Biol 18(5):1424–1434
Silvestri S, Defina A, Marani M (2005) Tidal regime, salinity and salt marsh plant zonation. Estuar Coast Shelf Sci 62(1–2):119–130
Therneau T, Atkinson B, Ripley B, Ripley MB (2015) Rpart: recursive partitioning and regression trees. R Package Version 4.1–10
Trimble (2015) GEO 7X Ground Positioning System. Available at: https://www.trimble.com/mappingGIS/geo-7-series
US Department of Agriculture (2016) National Agriculture Imagery Program accessed through the Geospatial Data Gateway. Available at: http:// datagateway.nrcs.usda.gov. Accessed February 2016
US Fish and Wildlife Service. National Wetland Inventory (2010) Available at: https://www.fws.gov/wetlands/index.html. Accessed January 2016
US Geological Survey (2015) National Elevation Dataset (NED). Available at: https://nationalmap.gov/elevation.html. Accessed January 2016
Wiest WA, Correll MD, Olsen BJ, Elphick CS, Hodgman TP, Curson DR, Shriver WG (2016) Population estimates for tidal marsh birds of high conservation concern in the northeastern USA from a design-based survey. Condor 118(2):274–288
Wilson C, Hughes ZJ, FitzGerald DM, Hopkinson CS, Valentine V, Kolker AS (2014) Saltmarsh pool and tidal creek morphodynamics: dynamic equilibrium of northern latitude saltmarshes? Geomorphology 213:99–115
Xie Y, Zhang A, Welsh W (2015) Mapping wetlands and Phragmites using publically available remotely sensed images. Photogramm Eng Remote Sens 81(1):69–78
Yang J (2009) Mapping salt marsh vegetation by integrating hyperspectral imagery and LiDAR remote sensing. In: Wang Y (ed) Remote sensing of coastal environments. CRC Press, Boca Raton, pp 173–186
Acknowledgements
This work was made possible through financial support from the North Atlantic Landscape Conservation Cooperative and the United States Fish and Wildlife Service (USFWS) Northeast Region Science Applications (#24), and the National Institute of Food and Agriculture, Hatch Project Number ME0-21710 through the Maine Agricultural & Forest Experiment Station. This is Maine State Agricultural and Forest Experimentation Station Publication # 3590. We would like to thank all Saltmarsh Habitat and Avian Research Program (SHARP) field technicians who collected field training data for this effort, and all participating landowners that allowed access to their properties for surveying. We also thank Janet Leese for countless hours spent digitizing training polygons in the lab. Comments from Erin and Kasey Legaard, D. Rosco, N. Hanson, and the Olsen Lab substantially improved the methods described here.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
ESM 1
(DOCX 23 kb)
Rights and permissions
About this article
Cite this article
Correll, M.D., Hantson, W., Hodgman, T.P. et al. Fine-Scale Mapping of Coastal Plant Communities in the Northeastern USA. Wetlands 39, 17–28 (2019). https://doi.org/10.1007/s13157-018-1028-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13157-018-1028-3