Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Mapping of mangrove extent and zonation using high and low tide composites of Landsat data

  • MANGROVES IN CHANGING ENVIRONMENTS
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Monitoring mangrove health and distribution requires reliable methods that can be undertaken rapidly and at a resolution that optimises costs and accuracy. The Landsat record has been used for this purpose, but its application has been limited by the capacity to provide accurate results that distinguish mangrove from adjoining communities. The Australian Geoscience Data Cube provides a framework for exploring the Landsat record from 1987 onwards, and as pre-processing has already been undertaken there are efficiencies gained using this resource. Using the Data Cube, we exploited the differential spectral signature of mangrove under high tide and low tide conditions at Darwin Harbour, Australia, a relatively stable mangrove ecosystem, using image composites that combined imagery corresponding to the highest 10% and lowest 10% of tides. By applying the automated RandomForest classification technique, we demonstrate the capacity to accurately determine the extent of mangrove zones. Classification identified five mangrove zones: (1) seaward margin dominated by Sonneratia alba, (2) Rhizophora zone dominated by Rhizophora stylosa, (3) tidal flat dominated by Ceriops tagal, (4) landward salt flat and (5) marginal hinterland. Image composites that included high and low tide images achieved the best outcomes with kappa co-efficient of 0.81 and overall accuracy of 82%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted from Brocklehurst & Edmeades (1996)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Sun synchronous sensors such as Landsat typically do not observe the full extent of the astronomical tidal range given that the highest and lowest astronomical tides typically occur at dusk and dawn rather than at 10:30 am which is the typical sun synchronous overpass time.

References

  • Asbridge, E., R. Lucas, C. Ticehurst & P. Bunting, 2016. Mangrove response to environmental change in Australia’s Gulf of Carpentaria. Ecology and Evolution 6: 3523–3539.

    Article  PubMed  PubMed Central  Google Scholar 

  • Aziz, A. A., S. Phinn & P. Dargusch, 2015. Investigating the decline of ecosystem services in a production mangrove forest using Landsat and object-based image analysis. Estuarine, Coastal and Shelf Science 164: 353–366.

    Article  Google Scholar 

  • BOM, 2016. Monthly Data Report – May 2016. Commonwealth of Australia, Canberra.

    Google Scholar 

  • Brocklehurst, P. & B. Edmeades, 1996. Mangrove Survey of Darwin Harbour, Northern Territory, Australia. Technical Report

  • Brocklehurst, P. & B. Edmeades, 2003. Mangrove Survey of Bynoe Harbour, Northern Territory. Technical Report.

  • Crase, B., A. Liedloff, P. A. Vesk, M. A. Burgman & B. A. Wintle, 2013. Hydroperiod is the main driver of the spatial pattern of dominance in mangrove communities. Global Ecology and Biogeography 22: 806–817.

    Article  Google Scholar 

  • Díaz, B. M. & G. A. Blackburn, 2003. Remote sensing of mangrove biophysical properties: evidence from a laboratory simulation of the possible effects of background variation on spectral vegetation indices. International Journal of Remote Sensing 24: 53–73.

    Article  Google Scholar 

  • Egbert, G. D. & L. Erofeeva, 2010. OTIS – the OSU Tidal Inversion Software. In: Oregon State University. http://volkov.oce.orst.edu/tides/otis.html (Accessed 24 June 2016).

  • Eva, H. D., A. S. Belward, E. E. De Miranda, C. M. Di Bella, V. Gond, O. Huber, S. Jones, M. Sgrenzaroli & S. Fritz, 2004. A land cover map of South America. Global Change Biology 10: 731–744.

    Article  Google Scholar 

  • Farnsworth, E. J. & A. M. Ellison, 1997. The global conservation status of mangroves. Ambio, Stockholm.

    Google Scholar 

  • Friess, D. A. & E. L. Webb, 2014. Variability in mangrove change estimates and implications for the assessment of ecosystem service provision. Global Ecology and Biogeography 23: 715–725.

    Article  Google Scholar 

  • Giri, C., B. Pengra, Z. Zhu, A. Singh & L. L. Tieszen, 2007. Monitoring mangrove forest dynamics of the Sundarbans in Bangladesh and India using multi-temporal satellite data from 1973 to 2000. Estuarine, Coastal and Shelf Science 73: 91–100.

    Article  Google Scholar 

  • Giri, C., E. Ochieng, L. L. Tieszen, Z. Zhu, A. Singh, T. Loveland, J. Masek & N. Duke, 2011. Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecology and Biogeography 20: 154–159.

    Article  Google Scholar 

  • Giri, S., A. Mukhopadhyay, S. Hazra, S. Mukherjee, D. Roy, S. Ghosh, T. Ghosh & D. Mitra, 2014. A study on abundance and distribution of mangrove species in Indian Sundarban using remote sensing technique. Journal of Coastal Conservation 18: 359–367.

    Article  Google Scholar 

  • Gislason, P. O., J. A. Benediktsson & J. R. Sveinsson, 2006. Random forests for land cover classification. Pattern Recognition Letters 27: 294–300.

    Article  Google Scholar 

  • Guinea, M., 1987. Rapid Creek mangrove regeneration, thirteen years onward. In: A Workshop on Research and Management held in Darwin Australian National University, Darwin.

  • Ham, J., Y. Chen, M. M. Crawford & J. Ghosh, 2005. Investigation of the random forest framework for classification of hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing 43: 492–501.

    Article  Google Scholar 

  • Hamilton, S. E. & D. Casey, 2016. Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21). Global Ecology and Biogeography 25: 729–738.

    Article  Google Scholar 

  • Heumann, B. W., 2011. Satellite remote sensing of mangrove forests: recent advances and future opportunities. Progress in Physical Geography 35: 87–108.

    Article  Google Scholar 

  • Jhonnerie, R., V. P. Siregar, B. Nababan, L. B. Prasetyo & S. Wouthuyzen, 2015. Random forest classification for mangrove land cover mapping using Landsat 5 TM and Alos Palsar imageries. Procedia Environmental Sciences 24: 215–221.

    Article  Google Scholar 

  • Kamal, M., S. Phinn & K. Johansen, 2015. Object-based approach for multi-scale mangrove composition mapping using multi-resolution image datasets. Remote Sensing 7: 4753–4783.

    Article  Google Scholar 

  • Kirui, K. B., J. G. Kairo, J. Bosire, K. M. Viergever, S. Rudra, M. Huxham & R. A. Briers, 2013. Mapping of mangrove forest land cover change along the Kenya coastline using Landsat imagery. Ocean & Coastal Management 83: 19–24.

    Article  Google Scholar 

  • Knudby, A., L. M. Nordlund, G. Palmqvist, K. Wikström, A. Koliji, R. Lindborg & M. Gullström, 2014. Using multiple Landsat scenes in an ensemble classifier reduces classification error in a stable nearshore environment. International Journal of Applied Earth Observation and Geoinformation 28: 90–101.

    Article  Google Scholar 

  • Kovacs, J. M., J. Wang & M. Blanco-Correa, 2001. Mapping disturbances in a mangrove forest using multi-date Landsat TM imagery. Environmental Management 27: 763–776.

    Article  CAS  PubMed  Google Scholar 

  • Kuenzer, C., A. Bluemel, S. Gebhardt, T. V. Quoc & S. Dech, 2011. Remote sensing of mangrove ecosystems: a review. Remote Sensing 3: 878.

    Article  Google Scholar 

  • Leon, J. & C. D. Woodroffe, 2011. Improving the synoptic mapping of coral reef geomorphology using object-based image analysis. International Journal of Geographical Information Science 25: 949–969.

    Article  Google Scholar 

  • Lewis, A., L. Lymburner, M. B. J. Purss, B. Brooke, B. Evans, A. Ip, A. G. Dekker, J. R. Irons, S. Minchin, N. Mueller, S. Oliver, D. Roberts, B. Ryan, M. Thankappan, R. Woodcock & L. Wyborn, 2016. Rapid, high-resolution detection of environmental change over continental scales from satellite data – the earth observation Data Cube. International Journal of Digital Earth 9: 106–111.

    Article  Google Scholar 

  • Li, F., D. L. B. Jupp, M. Thankappan, L. Lymburner, N. Mueller, A. Lewis & A. Held, 2012. A physics-based atmospheric and BRDF correction for Landsat data over mountainous terrain. Remote Sensing of Environment 124: 756–770.

    Article  Google Scholar 

  • Li, M. S., L. Mao, W. Shen, S. Liu & A. Wei, 2013. Change and fragmentation trends of Zhanjiang mangrove forests in southern China using multi-temporal Landsat imagery (1977–2010). Estuarine, Coastal and Shelf Science 130: 111–120.

    Article  Google Scholar 

  • Liu, K., X. Li, X. Shi & S. Wang, 2008. Monitoring mangrove forest changes using remote sensing and GIS data with decision-tree learning. Wetlands 28: 336–346.

    Article  CAS  Google Scholar 

  • Long, J. B. & C. Giri, 2011. Mapping the Philippines’ mangrove forests using Landsat imagery. Sensors 11: 2972–2981.

    Article  PubMed  PubMed Central  Google Scholar 

  • Loveland, T. R. & J. L. Dwyer, 2012. Landsat: building a strong future. Remote Sensing of Environment 122: 22–29.

    Article  Google Scholar 

  • Luo, Y., M. Liao, J. Yan, C. Zhang & S. Shang, 2013. Development and demonstration of an artificial immune algorithm for mangrove mapping using landsat TM. IEEE Geoscience and Remote Sensing Letters 10: 751–755.

    Article  Google Scholar 

  • Manson, F. J., N. R. Loneragan, I. M. McLeod & R. A. Kenyon, 2001. Assessing techniques for estimating the extent of mangroves: topographic maps, aerial photographs and Landsat TM images. Marine and Freshwater Research 52: 787–792.

    Article  Google Scholar 

  • Mas, J. F., 2004. Mapping land use/cover in a tropical coastal area using satellite sensor data, GIS and artificial neural networks. Estuarine, Coastal and Shelf Science 59: 219–230.

    Article  Google Scholar 

  • Nascimento, W. R. J., P. W. M. Souza-Filho, C. Proisy, R. M. Lucas & A. Rosenqvist, 2013. Mapping changes in the largest continuous Amazonian mangrove belt using object-based classification of multisensor satellite imagery. Estuarine, Coastal and Shelf Science 117: 83–93.

    Article  Google Scholar 

  • Odum, W. E. & R. Johannes, 1975. The response of mangroves to man-induced environmental stress. Elsevier Oceanography Series 12: 52–62.

    Article  Google Scholar 

  • Pal, M., 2005. Random forest classifier for remote sensing classification. International Journal of Remote Sensing 26: 217–222.

    Article  Google Scholar 

  • Rogers, K., P. I. Boon, S. Branigan, N. C. Duke, C. D. Field, J. A. Fitzsimons, H. Kirkman, J. R. Mackenzie & N. Saintilan, 2016. The state of legislation and policy protecting Australia’s mangrove and salt marsh and their ecosystem services. Marine Policy 72: 139–155.

    Article  Google Scholar 

  • Saintilan, N., N. C. Wilson, K. Rogers, A. Rajkaran & K. W. Krauss, 2014. Mangrove expansion and salt marsh decline at mangrove poleward limits. Global Change Biology 20: 147–157.

    Article  PubMed  Google Scholar 

  • Semeniuk, V., 1985. Mangrove environments of Port Darwin, Northern Territory: the physical framework and habitats. Journal of the Royal Society of Western Australia 67: 81–97.

    Google Scholar 

  • Sixsmith, J., S. Oliver & L. Lymburner, A hybrid approach to automated landsat pixel quality. In: 2013 IEEE International Geoscience and Remote Sensing Symposium – IGARSS, 21–26 July 2013: 4146–4149.

  • Son, N. T., C. F. Chen, N. B. Chang, C. R. Chen, L. Y. Chang & B. X. Thanh, 2015. mangrove mapping and change detection in Ca Mau Peninsula, Vietnam, using Landsat data and object-based image analysis. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 8: 503–510.

    Article  Google Scholar 

  • Spalding, M. D., M. Kainuma & L. Collins, 2010. World Atlas of Mangroves. Earthscan, London/Washington DC.

    Google Scholar 

  • Wightman, G. M., 1989. Mangroves of the Northern Territory. Northern Territory Botanical Bulletin 7: 1–130.

    Google Scholar 

  • Williams, D., E. Wolanski & S. Spagnol, 2006. Hydrodynamics of Darwin Harbour. In Wolanski, E. (ed.), The Environment in Asia Pacific Harbours. Springer, Dordrecht: 461–476.

    Chapter  Google Scholar 

  • Woodroffe, C. D., 1995. Response of tide-dominated mangrove shorelines in Northern Australia to anticipated sea-level rise. Earth Surface Processes and Landforms 20: 65–85.

    Article  Google Scholar 

  • Woodroffe, C. & K. Bardsley, 1987. The distribution and productivity of mangroves in Creek H, Darwin Harbour. In Larson, H., M. Michie & J. Hanley (eds) Proceedings of a Workshop on Research and Management held in Darwin, 2–3 September 1987. North Australia Research Unit, Australian National University, Darwin: 81–121.

Download references

Acknowledgements

The authors thank the University of Wollongong Global Challenges Program for financial support. KR receives funding from the Australian Research Council (FT130100532). The authors also acknowledge the work undertaken by USGS and NASA to collect, collate, archive and distribute Landsat data. This paper is published with the permission of the CEO, Geoscience Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerrylee Rogers.

Additional information

Guest editors: K. W. Krauss, I. C. Feller, D. A. Friess, R. R. Lewis III / Causes and Consequences of Mangrove Ecosystem Responses to an Ever-Changing Climate

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rogers, K., Lymburner, L., Salum, R. et al. Mapping of mangrove extent and zonation using high and low tide composites of Landsat data. Hydrobiologia 803, 49–68 (2017). https://doi.org/10.1007/s10750-017-3257-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-017-3257-5

Keywords

Navigation