Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Modified 3D Graphene-Au as a Novel Sensing Layer for Direct and Sensitive Electrochemical Determination of Carbaryl Pesticide in Fruit, Vegetable, and Water Samples

  • Published:
Food Analytical Methods Aims and scope Submit manuscript

Abstract

A novel, sensitive, and selective electrochemical sensor has been fabricated for the determination of 1-naphthyl methylcarbamate (carbaryl) as an important pesticide. Three-dimensional graphene (3DG) was synthesized by using thiourea as the crosslinking agent that simultaneously caused impregnation of sulfur and nitrogen functional groups onto the graphene. Graphene doped with S and N atoms was modified by gold nanoparticles. The obtained 3DG-Au nanocomposite was used for the determination of carbaryl by differential pulse voltammetry. Different experimental parameters such as pH, type of electrolyte, accumulation time, and accumulation potential were optimized. Under optimal conditions, a linear response was achieved in the range of 0.004–0.3 μM of carbaryl with a detection limit of 0.0012 μM (S/N = 3). The sensor demonstrated suitable selectivity, stability, and reproducibility through its successful application for the determination of carbaryl in fruit, vegetable, and water samples with good recoveries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Afkhami A, Khoshsafar H, Bagheri H, Madrakian T (2014) Preparation of NiFe2O4/graphene nanocomposite and its application as a modifier for the fabrication of an electrochemical sensor for the simultaneous determination of tramadol and acetaminophen. Anal Chim Acta 831:50–59

    Article  CAS  Google Scholar 

  • Bagheri H, Afkhami A, Hashemi P, Ghanei M (2015a) Simultaneous and sensitive determination of melatonin and dopamine with Fe3O4 nanoparticle-decorated reduced graphene oxide modified electrode. RSC Adv 5(28):21659–21669

    Article  CAS  Google Scholar 

  • Bagheri H, Afkhami A, Khoshsafar H, Rezaei M, Sabounchei SJ, Sarlakifar M (2015b) Simultaneous electrochemical sensing of thallium, lead and mercury using a novel ionic liquid/graphene modified electrode. Anal Chim Acta 870:56–66

    Article  CAS  Google Scholar 

  • Bagheri H, Afkhami A, Khoshsafar H, Rezaei M, Shirzadmehr A (2013) Simultaneous electrochemical determination of heavy metals using a triphenylphosphine/MWCNTs composite carbon ionic liquid electrode. Sensors Actuators B Chem 186:451–460

    Article  CAS  Google Scholar 

  • Bagheri H, Arab SM, Khoshsafar H, Afkhami A (2015c) A novel sensor for sensitive determination of atropine based on a Co3O4-reduced graphene oxide modified carbon paste electrode. New J Chem 39(5):3875–3881

    Article  CAS  Google Scholar 

  • Bagheri H, Pajooheshpour N, Jamali B, Amidi S, Hajian A, Khoshsafar H (2017) A novel electrochemical platform for sensitive and simultaneous determination of dopamine, uric acid and ascorbic acid based on Fe3O4-SnO2−Gr ternary nanocomposite. Microchem J 131:120–129

    Article  CAS  Google Scholar 

  • Cancino J, Razzino CA, Zucolotto V, Machado SA (2013) The use of mixed self-assembled monolayers as a strategy to improve the efficiency of carbamate detection in environmental monitoring. Electrochim Acta 87:717–723

    Article  CAS  Google Scholar 

  • Cesarino I, Moraes FC, Lanza MR, Machado SA (2012) Electrochemical detection of carbamate pesticides in fruit and vegetables with a biosensor based on acetylcholinesterase immobilised on a composite of polyaniline–carbon nanotubes. Food Chem 135(3):873–879

    Article  CAS  Google Scholar 

  • Dabiri M, Kasmaei M, Salari P, Movahed SK (2016) Copper nanoparticle decorated three dimensional graphene with high catalytic activity for Huisgen 1, 3-dipolar cycloaddition. RSC Adv 6(62):57019–57023

    Article  CAS  Google Scholar 

  • Chen W, Liu Y, Zhang Y, Fang J, Xu P, Xu J, Li X, Liu CC, Wen W (2017) Highly effective and specific way for trace analysis of carbaryl insecticides based on Au42Rh58 alloy nanocrystals. J Mater Chem A 5(15):7064–7071

    Article  CAS  Google Scholar 

  • Duan R-H, Liu P-F, Lin H, Zheng Y, Yu J-S, Wu X-T et al (2017) Ba6Li2CdSn4S16: lithium substitution simultaneously enhances band gap and SHG intensity. J Mater Chem C 5(28):7067–7074

    Article  CAS  Google Scholar 

  • Fan Y, Lai K, Rasco BA, Huang Y (2015) Determination of carbaryl pesticide in Fuji apples using surface enhanced Raman spectroscopy coupled with multivariate analysis. LWT Food Sci Technol 60:352–357

    Article  CAS  Google Scholar 

  • Fang CS, Oh KH, Park JK, Yang H (2017) Rapid and sensitive electrochemical detection of carbaryl based on enzyme inhibition and thiocholine oxidation mediated by a ruthenium (III) complex. Electroanalysis 29(2):339–344

    Article  CAS  Google Scholar 

  • Gaos MIR, Garcia JV, Garcia P, Iborra CM, Jiménez Y, Francis LA, Montoya A, Arnau A (2015) Love wave immunosensor for the detection of carbaryl pesticide. Sensors 14:16434–16453

    Google Scholar 

  • Ghosh P, Han G, De M, Kim CK, Rotello VM (2008) Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 60(11):1307–1315

    Article  CAS  Google Scholar 

  • Gong Z, Guo Y, Sun X, Cao Y, Wang X (2014) Acetylcholinesterase biosensor for carbaryl detection based on interdigitated array microelectrodes. Bioprocess Biosyst Eng 37(10):1929–1934

    Article  CAS  Google Scholar 

  • Goyal RN, Gupta VK, Chatterjee S (2010) Voltammetric biosensors for the determination of paracetamol at carbon nanotube modified pyrolytic graphite electrode. Sensors Actuators B Chem 149:252–258

    Article  CAS  Google Scholar 

  • Guiberteau A, Diaz TG, Salinas F, Ortiz J (1995) Indirect voltammetric determination of carbaryl and carbofuran using partial least squares calibration. Anal Chim Acta 305(1–3):219–226

    Article  CAS  Google Scholar 

  • Han F, Wang X, Lian J, Wang Y (2012) The effect of Sn content on the electrocatalytic properties of Pt-Sn nanoparticles dispersed on graphene nanosheets for the methanol oxidation reaction. Carbon 50(15):5498–5504

    Article  CAS  Google Scholar 

  • Gupta N, Pillai AK, Parmar P (2015b) Spectrophotometric determination of trace carbaryl in water and grain samples by inhibition of the rhodamine-B oxidation. Spectrochim Acta A 139:471–476

    Article  CAS  Google Scholar 

  • Gupta VK, Khalilzadeh MA, Rudbaraki A, Agarwal S, Yola ML, Atar N (2017a) Fabrication of highly sensitive nitrite electrochemical sensor in foodstuff using nanostructure sensor. Int J Electrochem Sci 12:3931–3940

    Article  CAS  Google Scholar 

  • Gupta VK, Mahmoody H, Karimi F, Agarwal S, Abbasghorbani M (2017b) Electrochemical determination of adrenaline using voltammetric sensor employing NiO/CNTs based carbon paste electrode. Int J Electrochem Sci 12:248–257

    Article  CAS  Google Scholar 

  • Gupta VK, Singh LP, Singh R, Upadhyay N, Kaur SP, Sethi B (2012) A novel copper (II) selective sensor based on dimethyl 4, 4′ (o-phenylene) bis(3-thioallophanate) in PVC matrix. J Mol Liq 174:11–16

    Article  CAS  Google Scholar 

  • Gupta VK, Sethi B, Sharma RA, Agarwal S, Bharti A (2013) Mercury selective potentiometric sensor based on low rim functionalized thiacalix [4]-arene as a cationic receptor. J Mol Liq 177:114–118

    Article  CAS  Google Scholar 

  • Gupta VK, Kumar S, Singh R, Singh LP, Shoora SK, Sethi B (2014) Cadmium (II) ion sensing through p-tert-butyl calix[6] arene based potentiometric sensor. J Mol Liq 195:65–68

    Article  CAS  Google Scholar 

  • Gupta VK, Karimi-Maleh HV, Sadegh R (2015a) Simultaneous determination of hydroxylamine, phenol and sulfite in water and wastewater samples using a voltammetric nanosensor. Int J Electrochem Sci 10:303–316

    Google Scholar 

  • Hatefi-Mehrjardi A (2013) Bienzyme self-assembled monolayer on gold electrode: an amperometric biosensor for carbaryl determination. Electrochim Acta 114:394–402

    Article  CAS  Google Scholar 

  • Hu C, Mou Z, Lu G, Chen N, Dong Z, Hu M, Qu L (2013a) 3D graphene–Fe3O4 nanocomposites with high-performance microwave absorption. Phys Chem Chem Phys 15(31):13038–13043

    Article  CAS  Google Scholar 

  • Hu H, Zhao Z, Wan W, Gogotsi Y, Qiu J (2013b) Ultralight and highly compressible graphene aerogels. Adv Mater 25(15):2219–2223

    Article  CAS  Google Scholar 

  • Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339–1339

    Article  CAS  Google Scholar 

  • Jain R, Gupta VK, Jadon N, Radhapyari K (2010) Voltammetric determination of cefixime in pharmaceuticals and biological fluids. Anal Biochem 407:79–88

    Article  CAS  Google Scholar 

  • Kaur B, Srivastava R (2014) Selective, nanomolar electrochemical determination of environmental contaminants dihydroxybenzene isomers found in water bodies using nanocrystalline zeolite modified carbon paste electrodes. Electroanalysis 26(8):1739–1750

    Article  CAS  Google Scholar 

  • Kovtyukhova NI, Ollivier PJ, Martin BR, Mallouk TE, Chizhik SA, Buzaneva EV, Gorchinskiy AD (1999) Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem Mater 11(3):771–778

    Article  CAS  Google Scholar 

  • Li Y, Shi L, Han G, Xiao Y, Zhou W (2017) Electrochemical biosensing of carbaryl based on acetylcholinesterase immobilized onto electrochemically inducing porous graphene oxide network. Sensors Actuators B Chem 238:945–953

    Article  CAS  Google Scholar 

  • Liu B, Xiao B, Cui L (2015) Electrochemical analysis of carbaryl in fruit samples on graphene oxide-ionic liquid composite modified electrode. J Food Compos Anal 40:14–18

    Article  CAS  Google Scholar 

  • Ma X, Wang G, Wu Q, Wang C, Wang Z (2014) Extraction of carbamate pesticides in fruit samples by graphene reinforced hollow fiber liquid microextraction followed by high performance liquid chromatographic detection. Food Chem 157:119–124

    Article  CAS  Google Scholar 

  • Machado BF, Serp P (2012) Graphene-based materials for catalysis. Catal Sci Technol 2(1):54–75

    Article  CAS  Google Scholar 

  • Moraes FC, Mascaro LH, Machado SA, Brett CM (2009) Direct electrochemical determination of carbaryl using a multi-walled carbon nanotube/cobalt phthalocyanine modified electrode. Talanta 79(5):1406–1411

    Article  CAS  Google Scholar 

  • Movahed SK, Fakharian M, Dabiri M, Bazgir A (2014) Gold nanoparticle decorated reduced graphene oxide sheets with high catalytic activity for Ullmann homocoupling. RSC Adv 4(10):5243–5247

    Article  CAS  Google Scholar 

  • Movahed SK, Shariatipour M, Dabiri M (2015) Gold nanoparticles decorated on a graphene-periodic mesoporous silica sandwich nanocomposite as a highly efficient and recyclable heterogeneous catalyst for catalytic applications. RSC Adv 5(42):33423–33431

    Article  CAS  Google Scholar 

  • Perez-Lopez J, Zapardiel A, Bermejo E, Arauzo E, Hernandez L (1994) Electrochemical determination of carbaryl oxidation in natural water and soil samples. Fresenius J Anal Chem 350(10–11):620–625

    Article  CAS  Google Scholar 

  • Rahmani T, Hajian A, Afkhami A, Bagheri H (2018) A novel and high performance enzyme-less sensing layer for electrochemical detection of methyl parathion based on BSA templated Au-Ag bimetallic nanoclusters. New J Chem 42:7213–7222

    Article  CAS  Google Scholar 

  • Salmanpour S, Sadrnia A, Karimi F, Majani N, Yola ML, Gupta VK (2018) NiO nanoparticle decorated on single-wall carbon nanotubes and 1-butyl-4-methylpyridinium tetrafluoroborate for sensitive raloxifene sensor. J Mol Liq 254:255–259

    Article  CAS  Google Scholar 

  • Salih FE, Achiou B, Ouammou M, Bennazha J, Ouarzane A, Younssi SA, el Rhazi M (2017) Electrochemical sensor based on low silica X zeolite modified carbon paste for carbaryl determination. J Adv Res 8(6):669–676

    Article  CAS  Google Scholar 

  • Santalad A, Zhou L, Shang F, Fitzpatrick D, Burakham R, Srijaranai S, Glennon JD, Luong JHT (2010) Micellar electrokinetic chromatography with amperometric detection and off-line solid-phase extraction for analysis of carbamate insecticides. J Chromatogr A 1217(32):5288–5297

    Article  CAS  Google Scholar 

  • Santana ER, de Lima CA, Piovesan JV, Spinelli A (2017) An original ferroferric oxide and gold nanoparticles-modified glassy carbon electrode for the determination of bisphenol A. Sensors Actuators B Chem 240:487–496

    Article  CAS  Google Scholar 

  • Song Y, Chen J, Sun M, Gong C, Shen Y, Song Y, Wang L (2016) A simple electrochemical biosensor based on AuNPs/MPS/Au electrode sensing layer for monitoring carbamate pesticides in real samples. J Hazard Mater 304:103–109

    Article  CAS  Google Scholar 

  • Teixeira H, Proença P, Alvarenga M, Oliveira M, Marques EP, Vieira DN (2004) Pesticide intoxications in the Centre of Portugal: three years analysis. Forensic Sci Int 143(2–3):199–204

    Article  CAS  Google Scholar 

  • Van Toan P, Sebesvari Z, Bläsing M, Rosendahl I, Renaud FG (2013) Pesticide management and their residues in sediments and surface and drinking water in the Mekong Delta, Vietnam. Sci Total Environ 452:28–39

    Article  Google Scholar 

  • Wang M, Huang J, Wang M, Zhang D, Chen J (2014) Electrochemical nonenzymatic sensor based on CoO decorated reduced graphene oxide for the simultaneous determination of carbofuran and carbaryl in fruits and vegetables. Food Chem 151:191–197

    Article  CAS  Google Scholar 

  • Wei H, Sun J-J, Wang Y-M, Li X, Chen G-N (2008) Rapid hydrolysis and electrochemical detection of trace carbofuran at a disposable heated screen-printed carbon electrode. Analyst 133(11):1619–1624

    Article  CAS  Google Scholar 

  • Zhao L, Zhao F, Zeng B (2014) Electrochemical determination of carbaryl by using a molecularly imprinted polymer/graphene-ionic liquid-nano Au/chitosan-AuPt alloy nanoparticles composite film modified electrode. Int J Electrochem Sci 9:1366–1377

    Google Scholar 

  • Zhu C, Yang G, Li H, Du D, Lin Y (2014a) Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal Chem 87(1):230–249

    Article  Google Scholar 

  • Zhu X, Zhang P, Xu S, Yan X, Xue Q (2014b) Free-standing three-dimensional graphene/manganese oxide hybrids as binder-free electrode materials for energy storage applications. ACS Appl Mater Interfaces 6(14):11665–11674

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge the laboratory supports provided by the Research Council of Baqiyatallah University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan Bagheri.

Ethics declarations

Conflict of Interest

Turaj Rahmani declares that he has no conflict of interest. Hasan Bagheri declares that he has no conflict of interest. Mohammad Behbahani declares that he has no conflict of interest. Ali Hajian declares that he has no conflict of interest. Abbas Afkhami declares that he has no conflict of interest.

Ethics Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

For this type of study, informed consent is not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmani, T., Bagheri, H., Behbahani, M. et al. Modified 3D Graphene-Au as a Novel Sensing Layer for Direct and Sensitive Electrochemical Determination of Carbaryl Pesticide in Fruit, Vegetable, and Water Samples. Food Anal. Methods 11, 3005–3014 (2018). https://doi.org/10.1007/s12161-018-1280-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12161-018-1280-4

Keywords

Navigation