Abstract
Several vision-based road applications use stereo vision algorithms, and they generally must be fast to be applied in real time. The main problem in stereo vision is the stereo matching problem, which consists in finding correspondences between two stereo images. In this paper, we present a new fast edge-based stereo matching approach devoted to road applications. Two passes of the dynamic programming algorithm are applied to estimate the final disparity map. The matching results of the first pass are only exploited to compute an initial disparity map (IDM). The so-called guiding edge points (GEPs) together with disparity ranges, i.e., possible matches, are derived from the IDM. In the second pass, the disparity ranges are used to reduce the search space as well as the mismatches and the GEPs to control and guide the matching process to the optimal solution. The proposed method has been tested on both real and virtual stereo images, it has been compared to a recently proposed method, and the results are satisfactory.
Similar content being viewed by others
References
Ansari, M.E., Mazoul, A., Bensrhair, A., Bebis, G.: A real-time spatio-temporal stereo matching for road applications. In: 2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC), pp. 1483–1488 (2011)
Barnard, S., Fisher, M.: Computational stereo. ACM Comput. Surv. 14, 553–572 (1982)
Brown, L.G.: A survey of image registration techniques. ACM Comput. Surv. 24(4), 325–376 (1992)
Brown, M., Burschka, D., Hager, G.: Advances in computational stereo. IEEE Trans. Pattern Anal. Mach. Intell. 25(8), 993–1008 (2003)
Buder NCMF Maximilian: Kehtarnavaz Dense real-time stereo matching using memory efficient semi-global-matching variant based on fpgas. In: Real-Time Image and Video Processing 2012, vol. 8437. SPIE Photonics Europe, Brussels, Belgium (2012)
Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 6, 679–698 (1986)
Chandraker, M., Lim, J., Kriegman, D.: Moving in stereo: efficient structure and motion using lines. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 1741–1748 (2009)
Deng, Y., Lin, X.: A fast line segment based dense stereo algorithm using tree dynamic programming. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) Computer Vision ECCV 2006. Lecture Notes in Computer Science, vol. 3953, pp. 201–212. Springer, Berlin (2006)
Dhond, U., Aggarwal, J.: Structure from stereo—a review. IEEE Trans. Syst. Man Cybern. 19(6), 1489–1510 (1989)
El-Ansari, M., Mousset, S., Bensrhair, A.: Temporal consistent real-time stereo for intelligent vehicles. Pattern Recogn. Lett. 31(11), 1226–1238 (2010)
El-Ansari, M., Bensrhair, A., Mousset, S., Bebis G.: Temporal consistent fast stereo matching for advanced driver assistance systems. In: IEEE Intelligent Vehicles Symposium, pp. 825–831 (2010)
Ellahyani, A., El-Ansari, M., El-Jaafari, I.: Traffic sign detection and recognition based on random forests. J. Appl. Soft Comput. 46, 805–815 (2016)
Forstmann, S., Kanou, Y., Ohya, J., Thuering, S., Schmitt, A.: Real-time stereo by using dynamic programming. In: Conference on Computer Vision and Pattern Recognition Workshop, 2004. CVPRW ’04, pp. 29–29 (2004)
Gong, M., Yang, Y.H.: Fast unambiguous stereo matching using reliability-based dynamic programming. IEEE Trans. Pattern Anal. Mach. Intell. 27(6), 998–1003 (2005)
Hariti, M., Ruichek, Y., Koukam, A.: A voting stereo matching method for real-time obstacle detection. In: Proceedings of IEEE International Conference on Robotics and Automation, 2003. ICRA ’03, vol. 2, pp. 1700–1704 (2003)
Hirschmuller, H.: Stereo processing by semiglobal matching and mutual information. IEEE Trans. Pattern Anal. Mach. Intell. 30, 328–341 (2008)
Jia, B., Feng, W., Zhu, M.: Obstacle detection in single images with deep neural networks. Signal Image Video Process. 1–8 (2015). doi:10.1007/s11760-015-0855-4
Jiao, J., Wang, R., Wang, W., Dong, S., Wang, Z., Gao, W.: Local stereo matching with improved matching cost and disparity refinement. IEEE MultiMed. 21(4), 16–27 (2014)
Jurez, D.H., Chacn, A., Espinosa, A., Vzquez, D., Moure, J.C., Lpez, A.M.: Embedded real-time stereo estimation via semi-global matching on the GPU. Procedia Computer Science. In: International Conference on Computational Science 2016. ICCS 2016, 6–8 June 2016, San Diego, CA, USA, vol. 80, pp. 143–153 (2016)
Klaus, A., Sormann, M., Karner, K.: Segment-based stereo matching using belief propagation and a self-adapting dissimilarity measure. In: 18th International Conference on Pattern Recognition, 2006. ICPR 2006, vol. 3, pp. 15–18 (2006)
Kolmogorov, V., Zabih, R.: Computing visual correspondence with occlusions using graph cuts. In: Proceedings of Eighth IEEE International Conference on Computer Vision, 2001. ICCV 2001, vol. 2, pp. 508–515. IEEE (2001)
Labayrade, R., Aubert, D., Tarel, J.P.: Real time obstacle detection in stereo vision on non-flat road geometry through v-disparity representation. In: IEEE Intelligent Vehicle Symposium, Versailles (2002)
Li, Z.N.: Stereo correspondence based on line matching in hough space using dynamic programming. IEEE Trans. Syst. Man Cybern. 24(1), 144–152 (1994)
Li, R., Ham, B., Oh, C., Sohn, K.: Disparity search range estimation based on dense stereo matching. In: 2013 8th IEEE Conference on Industrial Electronics and Applications (ICIEA), pp. 753–759 (2013)
Madrigal, F., Hayet, J.B., Lerasle, F.: Improving multiple pedestrians tracking with semantic information. SIViP 8(1), 113–123 (2014)
Mazoul, A., El-Ansari, M., Zebbara, K., Bebis, G.: Fast spatio-temporal stereo for intelligent transportation systems. Pattern Anal. Appl. 17(1), 211–221 (2014)
Medioni, G., Nevatia, R.: Segment-based stereo matching. Comput. Vis. Graph. Image Process. 31(1), 2–18 (1985)
Min, D., Yea, S., Arican, Z., Vetro, A.: Disparity search range estimation: enforcing temporal consistency. In: 2010 IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), pp. 2366–2369 (2010)
Otha, Y., Kanade, T.: Stereo by intra- and inter-scanline search using dynamic programming. IEEE Trans. Pattern Anal. Mach. Intell. 7(2), 139–154 (1989)
Raghavendra, U., Makkithaya, K., Karunakar, A.K.: Anchor-diagonal-based shape adaptive local support region for efficient stereo matching. SIViP 9(4), 893–901 (2013)
Rojas, A., Calvo, A., Muoz, J.: A dense disparity map of stereo images. Pattern Recogn. Lett. 18(4), 385–393 (1997)
Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vis. 47(1–3), 7–42 (2002). doi:10.1023/A:1014573219977
Tippetts, B., Lee, D.J., Lillywhite, K., Archibald, J.: Review of stereo vision algorithms and their suitability for resource-limited systems. J. Real-Time Image Proc. 11(1), 5–25 (2013)
van der Mark, W., Gavrila, D.M.: Mars/prescan virtual stereo images (2006). http://stereodatasets.wvandermark.com/. Accessed 2016
Veksler, O.: Fast variable window for stereo correspondence using integral images. In: Proceedings IEEE Conference Computer Vision and Pattern Recognition, pp. 556–561 (2003)
Veksler, O.: Stereo correspondence by dynamic programming on a tree. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. CVPR 2005, vol. 2, pp. 384–390 (2005)
Wang, L., Gong, M., Gong, M., Yang, R.: How far can we go with local optimization in real-time stereo matching. In: Third International Symposium on 3D Data Processing, Visualization, and Transmission, pp. 129–136. IEEE (2006)
Wang, L., Liao, M., Gong, M., Yang, R., Nister, D.: High-quality real-time stereo using adaptive cost aggregation and dynamic programming. In: Third International Symposium on 3D Data Processing, Visualization and Transmission, pp. 798–805 (2006)
Witt, J., Weltin, U.: Sparse stereo by edge-based search using dynamic programming. In: 2012 21st International Conference on Pattern Recognition (ICPR), pp. 3631–3635 (2012)
Yang, Q., Wang, L., Ahuja, N.: A constant-space belief propagation algorithm for stereo matching. In: IEEE Conference Computer Vision and Pattern Recognition (CVPR), 2010, pp. 1458–1465. IEEE (2010)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
El Jaafari, I., El Ansari, M. & Koutti, L. Fast edge-based stereo matching approach for road applications. SIViP 11, 267–274 (2017). https://doi.org/10.1007/s11760-016-0932-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11760-016-0932-3