Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Characteristics of ant-inspired traffic flow

Applying the social insect metaphor to traffic models

  • Published:
Swarm Intelligence Aims and scope Submit manuscript

Abstract

We investigate the organization of traffic flow on preexisting uni- and bidirectional ant trails. Our investigations comprise a theoretical as well as an empirical part. We propose minimal models of uni- and bi-directional traffic flow implemented as cellular automata. Using these models, the spatio-temporal organization of ants on the trail is studied. Based on this, some unusual flow characteristics which differ from those known from other traffic systems, like vehicular traffic or pedestrians dynamics, are found. The theoretical investigations are supplemented by an empirical study of bidirectional traffic on a trail of Leptogenys processionalis. Finally, we discuss some plausible implications of our observations from the perspective of flow optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm intelligence: From natural to artificial systems. New York: Oxford University Press.

    MATH  Google Scholar 

  • Bonabeau, E., Dorigo, M., & Theraulaz, G. (2000). Inspiration for optimization from social insect behaviour. Nature, 406, 39–42.

    Article  Google Scholar 

  • Burd, M. (2006). Ecological consequences of traffic organisation in ant societies. Physica A, 372, 124–131.

    Article  Google Scholar 

  • Burd, M., Archer, D., Aranwela, N., & Stradling, D. J. (2002). Traffic dynamics of the leaf-cutting ant. Atta cephalotes. American Naturalist, 159, 283–293.

    Article  Google Scholar 

  • Chopard, B., & Droz, M. (1998). Cellular automata modelling of physical systems. Cambridge: Cambridge University Press.

    Google Scholar 

  • Chowdhury, D., Santen, L., & Schadschneider, A. (2000). Statistical physics of vehicular traffic and some related systems. Physics Reports, 329, 199–329.

    Article  MathSciNet  Google Scholar 

  • Chowdhury, D., Guttal, V., Nishinari, K., & Schadschneider, A. (2002). A cellular-automata model of flow in ant-trails: Non-monotonic variation of speed with density. Journal of Physics A: Mathematical and General, 35, L573–L577.

    Article  MathSciNet  MATH  Google Scholar 

  • Chowdhury, D., Nishinari, K., & Schadschneider, A. (2004). Self-organized patterns and traffic flow in colonies of organisms: from bacteria and social insects to vertebrates. Phase Transition, 77, 601–624.

    Article  Google Scholar 

  • Couzin, I. D., & Franks, N. R. (2003). Self-organized lane formation and optimized traffic flow in army ants. Proceedings of Royal Society London B, 270, 139–146.

    Article  Google Scholar 

  • Dussutour, A., Fourcassié, V., Helbing, D., & Deneubourg, J.-L. (2004). Optimal traffic organization in ants under crowded conditions. Nature, 428, 70–73.

    Article  Google Scholar 

  • Dussutour, A., Deneubourg, J.-L., & Fourcassié, V. (2005). Temporal organisation of bi-directional traffic in the ant Lasius niger (1). Journal of Experimental Biology, 208, 2903–2912.

    Article  Google Scholar 

  • Dussutour, A., Beshers, S., Deneubourg, J.-L., & Fourcassié, V. (2007). Crowding increases foraging efficiency in the leaf-cutting ant. Atta Colombica. Insectes Sociaux, 54, 168–165.

    Google Scholar 

  • Hölldobler, B., & Wilson, E. O. (1990). The ants. Cambridge: The Belknap Press of Harvard University Press.

    Google Scholar 

  • Howard, J. (2001). Mechanics of motor proteins and the cytoskeleton. Sunderland: Sinauer Associates.

    Google Scholar 

  • Jackson, D. E., & Ratnieks, F. L. W. (2006). Communication in ants. Current Biology, 16, R570–R574.

    Article  Google Scholar 

  • John, A. (2006). Physics of traffic on ant trails and related systems. Ph.D. thesis, Universität zu Köln, Germany.

  • John, A., Schadschneider, A., Chowdhury, D., & Nishinari, K. (2004). Collective effects in traffic on bi-directional ant-trails. Journal of Theoretical Biology, 231, 279–285.

    Article  MathSciNet  Google Scholar 

  • John, A., Kunwar, A., Namazi, A., Chowdhury, D., Nishinari, K., & Schadschneider, A. (2007a). Traffic on bi-directional ant-trails. In N. Waldau, P. Gattermann, H. Knoflacher, M. Schreckenberg (Eds.), Pedestrian and evacuation dynamics 2005 (pp. 465–470). Berlin: Springer.

    Chapter  Google Scholar 

  • John, A., Kunwar, A., Namazi, A., Schadschneider, A., Chowdhury, D., & Nishinari, K. (2007b). Traffic on bi-directional ant-trails: Coarsening behaviour and fundamental diagrams. In A. Schadschneider, T. Pöschel, R. Kühne, M. Schreckenberg, D.E. Wolf (Eds.), Traffic and granular flow ’05 (pp. 269–276). Berlin: Springer.

    Chapter  Google Scholar 

  • Johnson, K., & Rossi, L. F. (2006). A mathematical and experimental study of ant foraging line dynamics. Journal of Theoretical Biology, 241, 360–369.

    Article  MathSciNet  Google Scholar 

  • Krug, J., & Ferrari, P. A. (1996). Phase transitions in driven diffusive systems with random rates. Journal of Physics A, 29, L465–L471.

    Article  Google Scholar 

  • Kunwar, A., John, A., Nishinari, K., Schadschneider, A., & Chowdhury, D. (2004). Collective traffic-like movement of ants on a trail: dynamical phases and phase transitions. Journal of Physical Society of Japan, 73, 2979–2985.

    Article  MATH  Google Scholar 

  • May, A. D. (1990). Traffic flow fundamentals. Englewood Cliffs: Prentice Hall.

    Google Scholar 

  • Moffet, M. W. (1987). Ants that go with the flow: A new method of orientation by mass communication. Naturwissenschaften, 74, 551–553.

    Article  Google Scholar 

  • Nagel, K., & Schreckenberg, M. (1992). A cellular automaton model for freeway traffic. Journal of Physics I France, 2, 2221–2229.

    Article  Google Scholar 

  • Schadschneider, A., Kirchner, A., & Nishinari, K. (2003). From ant trails to pedestrian dynamics. Applied Bionics and Biomechanics, 1, 11–19.

    Article  Google Scholar 

  • Schadschneider, A., Klingsch, W., Klüpfel, H., Kretz, T., Rogsch, C., & Seyfried, A. (2008). Evacuation dynamics: Empirical results, modeling and applications. In Meyers B. (Ed.), Encyclopedia of complexity and system science. New York: Springer.

    Google Scholar 

  • Schütz, G. M. (2000). Exactly solvable models for many-body systems far from equilibrium. In C. Domb, J.L. Lebowitz (Eds.), Phase transitions and critical phenomena (Vol. 19, pp. 1–251). London: Academic Press.

    Chapter  Google Scholar 

  • Tripathy, G., & Barma, M. (1997). Steady state and dynamics of driven diffusive systems with quenched disorder. Physics Review Letters, 78, 3039–3042.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander John.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

John, A., Schadschneider, A., Chowdhury, D. et al. Characteristics of ant-inspired traffic flow. Swarm Intell 2, 25–41 (2008). https://doi.org/10.1007/s11721-008-0010-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11721-008-0010-8

Keywords

Navigation