Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Minimizing a complex quadratic fractional optimization problem with two second-order cone constraints

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

One of the problematic research areas in optimization is determining a global optimum for non-convex quadratic fractional optimization problems as a hard problem. This study seeks the quadratic fractional optimization problem in the complex field with two second-order cone constraints. An equivalent quadratic reformulation of the problem is given using the well-known Dinkelbach method, which can obtain its global optimum by applying the semidefinite relaxation approach and rank-one decomposition algorithm at each iteration of some classical methods. Finally, the results show the effectiveness of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lia, H.C., Liu, J.: Complex fractional programming involving generalized quasi/pseudo convex functions. ZAMM-J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik 82(3), 159–166 (2002)

    MathSciNet  Google Scholar 

  2. Nadeem, Q.U.A., Kammoun, A., Chaaban, A., Debbah, M., Alouini, M.S.: Asymptotic max-min SINR analysis of reconfigurable intelligent surface assisted MISO systems. IEEE Trans. Wirel. Commun. 19(12), 7748–7764 (2020)

    Article  Google Scholar 

  3. Huang, T.Y.: Second-order parametric free dualities for complex minimax fractional programming. Mathematics 8(1), 67–79 (2020)

    Article  MathSciNet  Google Scholar 

  4. Zare, A.: Solving the complex quadratic double-ratio minimax optimization under a quadratic constraint. J. Appl. Math. Comput. 69(1), 589–602 (2023)

    Article  MathSciNet  Google Scholar 

  5. Khalifa, H.A.E.W., Kumar, P., Alodhaibi, S.S.: Application of fuzzy random-based multi-objective linear fractional programming to inventory management problem. Syst. Sci. Control Eng. 10(1), 90–103 (2022)

    Article  Google Scholar 

  6. Khalifa, H.A.E.W., Alharbi, M., Kumar, P.: A new method for solving quadratic fractional programming problem in neutrosophic environment. Open Eng. 11(1), 880–886 (2021)

    Article  Google Scholar 

  7. Khalifa, H.A.E.W., Kumar, P.: A goal programming approach for multi-objective linear fractional programming problem with LR possibilistic variables. Int. J. Syst. Assur. Eng. Manag. 13(4), 2053–2061 (2022)

    Article  Google Scholar 

  8. Khalifa, H.A.E.W., Kumar, P., Alharbi, M.G.: On characterizing solution for multi-objective fractional two-stage solid transportation problem under fuzzy environment. J. Intell. Syst. 30(1), 620–635 (2021)

    Google Scholar 

  9. Ashrafi, A., Zare, A.: SDO and LDO relaxation approaches to complex fractional quadratic optimization. RAIRO-Operat. Res. 55, S2241–S2258 (2021)

    Article  MathSciNet  Google Scholar 

  10. Ma, J., Liu, W., Langley, R.: Filter-and-forward distributed relay beamforming for cognitive radio systems. IEEE International Conference on Communication Workshop (ICCW), pp. 895–900, (2015)

  11. Mohammadzadeh, S., Kukrer, O.: Robust adaptive beamforming based on covariance matrix and new steering vector estimation. Signal Image Video Process. 13(5), 853–860 (2019)

    Article  Google Scholar 

  12. Qian, J., He, Z., Zhang, W., Huang, Y., Fu, N., Chambers, J.: Robust adaptive beamforming for multiple-input multiple-output radar with spatial filtering techniques. Signal Process. 143, 152–160 (2018)

    Article  Google Scholar 

  13. Beck, A., Ben-Tal, A.: Finding a global optimal solution for a quadratically constrained fractional quadratic problem with applications to the regularized total least squares. SIAM J. Matrix Anal. Appl. 28(2), 425–445 (2006)

    Article  MathSciNet  Google Scholar 

  14. Beck, A., Teboulle, M.: On minimizing quadratically constrained ratio of two quadratic functions. J. Convex Anal. 17(3), 789–804 (2010)

    MathSciNet  Google Scholar 

  15. Dinkelbach, W.: On nonlinear fractional programming. Manag. Sci. 13(7), 492–498 (1967)

    Article  MathSciNet  Google Scholar 

  16. Zhang, A., Hayashi, S.: Celis-Dennis-Tapia based approach to quadratic fractional programming problems with two quadratic constraints. Numer. Algeb. Control Optim. 1(1), 83–98 (2011)

    Article  MathSciNet  Google Scholar 

  17. Ai, W., Zhang, S.: Strong duality for the CDT subproblem: a necessary and sufficient condition. SIAM J. Optim. 19(4), 1735–1756 (2009)

    Article  MathSciNet  Google Scholar 

  18. Huang, Y., Zhang, S.: Complex matrix decomposition and quadratic programming. Math. Operat. Res. 32(3), 758–768 (2007)

    Article  MathSciNet  Google Scholar 

  19. Zare, A., Keyanpour, M., Salahi, M.: On fractional quadratic optimization problem with two quadratic constraints. Numer. Algeb. Control Optim. 10(3), 301–315 (2020)

    Article  MathSciNet  Google Scholar 

  20. Sturm, J.F., Zhang, S.: On cones of nonnegative quadratic functions. Math. Operat. Res. 28(2), 246–267 (2003)

    Article  MathSciNet  Google Scholar 

  21. Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming, Version 2.1. http://cvxr.com/cvx (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arezu Zare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zare, A. Minimizing a complex quadratic fractional optimization problem with two second-order cone constraints. Optim Lett 18, 1201–1215 (2024). https://doi.org/10.1007/s11590-023-02044-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-023-02044-2

Keywords

Navigation