Abstract
Complex quadratic double-ratio minimax optimization (CQRMO) problem under a quadratic constraint has the potential to solve the total least squares problem. In order to solve it, a variant of S-Lemma is proposed and found to be interesting because it leads to a generalized linear conic fractional problem. Then, we achieve the global optimum of CQRMO problem with a quadratic constraint by using two algorithms for the generalized linear conic fractional problem. The efficiency of the proposed algorithms is evaluated by several numerical examples.
Similar content being viewed by others
References
Ben-Tal, A., Nemirovski, A.: Lectures on modern convex optimization: analysis, algorithms, and engineering applications, SIAM, (2001)
Blaimer, M., Heim, M., Neumann, D., Jakob, P.M., Kannengiesser, S., Breuer, F.: Comparison of phase constrained parallel MRI approaches: analogies and differences 75(3), 1086–1099 (2016)
Chalise, B.K., Vandendrope, L.: Optimization of MIMO relays for multipoint-to-multipoint communications: Nonrobust and robust designs. IEEE Trans. Signal Process. 58(12), 6355–6368 (2010)
Chen, J., Al-Homidan, S., Ansari, Q.H., Li, J., Lv, Y.: Robust necessary optimality conditions for nondifferentiable complex fractional programming with uncertain data. J. Optim. Theory Appl. 189(1), 221–243 (2021)
Crouzeix, J.P., Ferland, J.A., Schaible, S.: An algorithm for generalized fractional programs. J. Optim. Theory Appl. 47(1), 35–49 (1985)
Crouzeix, J.P., Ferland, J.A., Schaible, S.: A note on an algorithm for generalized fractional programs. J. Optim. Theory Appl. 50(1), 183–187 (1986)
Datta, N., Bhatia, D.: Duality for a class of nondifferentiable mathematical programming problems in complex space. J. Math. Anal. Appl. 101(1), 1–11 (1984)
K. Fan, Minimax theorems, Proceedings of the National Academy of Sciences of the United States of America, 39(1) (1953) 42-47
Flachs, J.: Generalized Cheney-Loeb-Dinkelbach-type algorithms. Math. Oper. Res. 10(4), 674–687 (1985)
Fradkov, A., Yakubovich, V.: The S-procedure and the duality relation in convex quadratic programming problems. Vestnik Leningrad. Univ 1(1), 81–87 (1973)
Grant, M., Boyd, S.: CVX: MATLAB Software for Disciplined Convex Programming, Version 2.1, http://cvxr.com/cvx (2015)
Hansen, P.C.: Regularization tools: a matlab package for analysis and solution of discrete ill-posed problems. Numerical Algorithms 6(1), 1–35 (1994)
Huang, T.Y.: Second-order parametric free dualities for complex minimax fractional programming. Mathematics 8(1), 67–79 (2020)
Husain, Z., Ahmad, I., Sharma, S.: Second order duality for minmax fractional programming. Optim. Lett. 3(2), 277–286 (2009)
Kramer, G., Gastpar, M., Gupta, P.: Cooperative strategies and capacity theorem for relay networks. IEEE Trans. Inf. Theory 51(9), 3037–3063 (2005)
Lai, HCh., Huang, T.Y.: Nondifferentiable minimax fractional programming in complex spaces with parametric duality. J. Global Optim. 53(2), 243–254 (2012)
Laneman, J. N., Wornell, G. W., Tse, D. N. C.: An efficient protocol for realizing cooperative diversity in wireless networks. In: Proceedings IEEE International Symposium on Information Theory, Washington, DC, (2001)
Neumann, J.V.: Zur theorie der gesellschaftsspiele. Math. Ann. 100, 295–320 (1928)
Rashid, U., Tuan, H.D., Kha, H.H., Nguyen, H.H.: Joint optimization of source precoding and relay beamforming in wireless MIMO relay networks. IEEE Trans. Commun. 62(2), 488–499 (2014)
Sheu, R. L.: An SDP approach for some quadratic fractional problems (Nonlinear Analysis and Convex Analysis)
Singh, V.P., Chaturvedi, A.K.: Max-Min fairness based linear Transceiver-Relay design for MIMO interference relay channel. IET Commun. 11(9), 1485–1496 (2017)
Verma, R.U., Zalmaim, G.J.: Second-order parametric optimality conditions in discrete minmax fractional programming. Comm. Appl. Nonlinear Anal. 23(3), 1–32 (2016)
Yang, X.M., Hou, S.H.: On minimax fractional optimality and duality with generalized convexity. J. Global Optim. 31(2), 235–252 (2005)
Yuan, D.H., Liu, X.L., Chinchuluun, A., Pardalos, P.M.: Nondifferentiable minimax fractional programming problems with (C, \(\alpha \), \(\rho \), d)-convexity. J. Optim. Theory Appl. 129(1), 185–199 (2006)
Zare, A., Ashrafi, A., Xia, Y.: Quadratic Double-Ratio minimax optimization. Oper. Res. Lett. 49(4), 543–547 (2021)
Zhang, G., Li, Q., Zhang, Q., Qin, J., Yang, L.: Signal-to-interference-plus-noise ratio-based multi-relay beamforming for multi-user multiple-input multiple-output cognitive relay networks with interference from primary network. IET Commun. 9(2), 227–238 (2015)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Zare, A. Solving the complex quadratic double-ratio minimax optimization under a quadratic constraint. J. Appl. Math. Comput. 69, 589–602 (2023). https://doi.org/10.1007/s12190-022-01762-7
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12190-022-01762-7
Keywords
- Fractional programming
- Minimax optimization
- Quadratic programming
- Semidefinite programming
- Global optimization