Abstract
This paper presents a deep and extensive performance analysis of the particle filter (PF) algorithm for a very compute intensive 3D multi-view visual tracking problem. We compare different implementations and parameter settings of the PF algorithm in a CPU platform taking advantage of the multithreading capabilities of the modern processors and a graphics processing unit (GPU) platform using NVIDIA CUDA computing environment as developing framework. We extend our experimental study to each individual stage of the PF algorithm, and evaluate the quality versus performance trade-off among different ways to design these stages. We have observed that the GPU platform performs better than the multithreaded CPU platform when handling a large number of particles, but we also demonstrate that hybrid CPU/GPU implementations can run almost as fast as only GPU solutions.
Similar content being viewed by others
References
Azad, P., Münch, D., Asfour, T., Dillmann R.: 6-DoF model-based tracking of arbitrarily shaped 3D objects. In: Proceedings of the IEEE International Conference on Robotics and Automation (2011)
Black , M.J., Sigal, L.: Synchronized Video and Motion Capture Dataset for Evaluation of Articulated Human Motion (HumanEva). CS Department, Brown University. http://vision.cs.brown.edu/humaneva/ (2007). Accessed June 2014
Brown, J.A., Capson, D.W.: A framework for 3D model-based visual tracking using a GPU-accelerated particle filter. IEEE Trans. Vis. Comput. Graph. 18, 68–80 (2012)
Cabido, R., Montemayor, A.S., Pantrigo, J.J., Payne, B.R.: Multiscale and local search methods for real time region tracking with particle filters: local search driven by adaptive scale estimation on GPUs. Mach. Vis. Appl. 21(1), 43–58 (2009)
Cabido, R., Concha, D., Pantrigo, J.J., Montemayor, A.S.: High speed articulated object tracking using GPUs: a particle filter approach. In: Proceedings of the 10th International Symposium on Pervasive Systems, Algorithms, and Networks (ISPAN). GPU Technology and Applications (GPUTA) Track (2009)
Carpenter, J., Clifford, P., Fearnhead, P.: Building robust simulation based filters for evolving data sets. Tech. Rep. Dept. Statist., Univ. Oxford, Oxford, UK (1999)
Chitchian, M., Simonetto, A., van Amesfoort, A.S., Keviczky, T.: Distributed computation particle filters on GPU-architectures for real-time control applications. IEEE Trans. Control Syst. Technol. 21(6), 2224–2238 (2013)
Choi, C., Christensen, H.I.: RGB-D object tracking: a particle filter approach on GPU. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2013)
Gordon, N.J., Salmond, D.J., Smith, A.F.M.: Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proc. F Radar Signal Process. 140(2), 107–113 (1993)
Harris, M.: Optimizing Parallel Reduction in CUDA. NVIDIA Developer Technology (2007)
Isard, M., Blake, A.: Condensation—conditional density propagation for visual tracking. Int. J. Comput. Vis. 29, 5–28 (1998)
Jepson, A.D., Fleet, D.J., El-Maraghi, T.F.: Robust online appearance models for visual tracking. In: Proceedings of the IEEE Conf. on CVPR, Kauai, vol. I, pp. 415–422 (2001)
Khronos OpenCL Working Group: The OpenCL Specification 2.0 (2013)
Kaewtrakulpong, P., Bowden, R.: An improved adaptive background mixture model for realtime tracking with shadow detection. In: Proceedings of 2nd European Workshop on Advanced Video Based Surveillance Systems (AVBS), Video Based Surveillance Systems: Computer Vision and Distributed Processing (2001)
Klein, G., Murray, D.: Full-3D edge tracking with a particle filter. In: Proceedings of the British Machine Vision Conference (2006)
Lepetit, V., Fua, P.: Monocular model-based 3D tracking of rigid objects: a survey. Found. Trends Comput. Graph. Vis. 1(1), 1–89 (2005)
Li, P.: An efficient particle filter based tracking method using graphics processing unit (GPU). J. Signal Process. Syst. 68(3), 317–332 (2012)
Li, T., Sun, S., Sattar, T.P., Corchado, J.M.: Fight sample degeneracy and impoverishment in particle filters: a review of intelligent approaches. Expert Syst. Appl. 4(8), 3944–3954 (2014)
Lopez-Mendez, A., Alcoverro, M., Pardas, M., Casas, J.R.: Real-time upper body tracking with online initialization using a range sensor. In: IEEE International Conference on Computer Vision Workshops (ICCV Workshops) (2011)
Michely, P., Chestnutty, J., Kagamiz, S., Nishiwakiz, K., Kuffneryz, J., Kanade, T.: GPU-accelerated real-time 3D tracking for humanoid autonomy. In: Proceedings of the JSME Robotics and Mechatronics Conference (ROBOMEC’08) (2008)
Migniot, C., Ababsa, F.: Hybrid 3D–2D human tracking in a top view. J. Real-Time Image Process. (2014). doi:10.1007/s11554-014-0429-7
Mohedano, R., García, N., Salgado, L., Jaureguizar, F.: 3D tracking using multi-view based particle filters. Lect. Notes Comput. Sci. 5259, 785–795 (2008)
Montemayor, A.S., Pantrigo, J.J., Sánchez, A., Fernández, F.: Particle filter on GPUs for real-time tracking. In: Proceedings of the ACM SIGGRAPH (Research Poster), Los Angeles, pp. 94 (2004)
Montemayor, A.S., Pantrigo, J.J., Cabido, R., Payne, B.R., Sánchez, A., Fernández, F.: Improving GPU particle filter with shader model 3.0 for visual tracking. In: Proceedings of the ACM SIGGRAPH (Research Poster), Boston (2006)
NVIDIA Corp.: CUDA C Programming Guide v. 5.5 (2013)
Pantrigo, J.J., Hernández, J., Sánchez, A.: Multiple and variable target visual tracking for video surveillance applications. Pattern Recognit. Lett. 31(12), 1577–1590 (2010)
Prisacariu, V.A., Reid, I.D.: PWP3D: real-time segmentation and tracking of 3D objects. Int. J. Comput. Vis. 98(3), 335–354 (2012)
Petit, A., Marchand, E., Kanani, K.: A robust model-based tracker combining geometrical and color edge information. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’13) (2013)
Rymut, B., Kwolek, B.: Real-time multiview human body tracking using GPU-accelerated PSO. In: Proceedings of International Conference on Parallel Processing and Applied Mathematics (PPAM’13). Lecture Notes in Computer Science (2014)
Rymut, B., Kwolek, B.: Real-time multiview human pose tracking using graphics processing unit-accelerated particle swarm optimization, CCPE. Wiley, New York (2014)
Tang, X., Su, J., Zhao, F., Zhou, J., Wei, P.: Particle filter track-before-detect implementation on GPU. EURASIP J. Wirel. Commun. Netw. 2013, 38 (2013)
Tyagi, A., Keck, M., Davis, J.W., Potamianos, G.: Kernel-based 3D tracking. In: Proceedings of the IEEE International Workshop on Visual Surveillance (2007)
Xie, C., Tana, J., Chenc, P., Zhangb, J., Hea, L.: Collaborative object tracking model with local sparse representation. J. Vis. Commun. Image Represent. 25(2), 423–434 (2014)
Zotkin, D., Duraiswami, R., Davis, L.: Joint audio-visual tracking using particle filters. EURASIP J. Appl. Signal Process. 11, 1154–1164 (2002)
Acknowledgments
This research has been partially supported by the Spanish Government Projects Refs. TIN2011-28151 and TIN2014-57633 and NVIDIA Professor Partnership Program.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Concha, D., Cabido, R., Pantrigo, J.J. et al. Performance evaluation of a 3D multi-view-based particle filter for visual object tracking using GPUs and multicore CPUs. J Real-Time Image Proc 15, 309–327 (2018). https://doi.org/10.1007/s11554-014-0483-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11554-014-0483-1