Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Performance evaluation of a 3D multi-view-based particle filter for visual object tracking using GPUs and multicore CPUs

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

This paper presents a deep and extensive performance analysis of the particle filter (PF) algorithm for a very compute intensive 3D multi-view visual tracking problem. We compare different implementations and parameter settings of the PF algorithm in a CPU platform taking advantage of the multithreading capabilities of the modern processors and a graphics processing unit (GPU) platform using NVIDIA CUDA computing environment as developing framework. We extend our experimental study to each individual stage of the PF algorithm, and evaluate the quality versus performance trade-off among different ways to design these stages. We have observed that the GPU platform performs better than the multithreaded CPU platform when handling a large number of particles, but we also demonstrate that hybrid CPU/GPU implementations can run almost as fast as only GPU solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Azad, P., Münch, D., Asfour, T., Dillmann R.: 6-DoF model-based tracking of arbitrarily shaped 3D objects. In: Proceedings of the IEEE International Conference on Robotics and Automation (2011)

  2. Black , M.J., Sigal, L.: Synchronized Video and Motion Capture Dataset for Evaluation of Articulated Human Motion (HumanEva). CS Department, Brown University. http://vision.cs.brown.edu/humaneva/ (2007). Accessed June 2014

  3. Brown, J.A., Capson, D.W.: A framework for 3D model-based visual tracking using a GPU-accelerated particle filter. IEEE Trans. Vis. Comput. Graph. 18, 68–80 (2012)

    Article  Google Scholar 

  4. Cabido, R., Montemayor, A.S., Pantrigo, J.J., Payne, B.R.: Multiscale and local search methods for real time region tracking with particle filters: local search driven by adaptive scale estimation on GPUs. Mach. Vis. Appl. 21(1), 43–58 (2009)

    Article  Google Scholar 

  5. Cabido, R., Concha, D., Pantrigo, J.J., Montemayor, A.S.: High speed articulated object tracking using GPUs: a particle filter approach. In: Proceedings of the 10th International Symposium on Pervasive Systems, Algorithms, and Networks (ISPAN). GPU Technology and Applications (GPUTA) Track (2009)

  6. Carpenter, J., Clifford, P., Fearnhead, P.: Building robust simulation based filters for evolving data sets. Tech. Rep. Dept. Statist., Univ. Oxford, Oxford, UK (1999)

  7. Chitchian, M., Simonetto, A., van Amesfoort, A.S., Keviczky, T.: Distributed computation particle filters on GPU-architectures for real-time control applications. IEEE Trans. Control Syst. Technol. 21(6), 2224–2238 (2013)

    Article  Google Scholar 

  8. Choi, C., Christensen, H.I.: RGB-D object tracking: a particle filter approach on GPU. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2013)

  9. Gordon, N.J., Salmond, D.J., Smith, A.F.M.: Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proc. F Radar Signal Process. 140(2), 107–113 (1993)

    Article  Google Scholar 

  10. Harris, M.: Optimizing Parallel Reduction in CUDA. NVIDIA Developer Technology (2007)

  11. Isard, M., Blake, A.: Condensation—conditional density propagation for visual tracking. Int. J. Comput. Vis. 29, 5–28 (1998)

    Article  Google Scholar 

  12. Jepson, A.D., Fleet, D.J., El-Maraghi, T.F.: Robust online appearance models for visual tracking. In: Proceedings of the IEEE Conf. on CVPR, Kauai, vol. I, pp. 415–422 (2001)

  13. Khronos OpenCL Working Group: The OpenCL Specification 2.0 (2013)

  14. Kaewtrakulpong, P., Bowden, R.: An improved adaptive background mixture model for realtime tracking with shadow detection. In: Proceedings of 2nd European Workshop on Advanced Video Based Surveillance Systems (AVBS), Video Based Surveillance Systems: Computer Vision and Distributed Processing (2001)

  15. Klein, G., Murray, D.: Full-3D edge tracking with a particle filter. In: Proceedings of the British Machine Vision Conference (2006)

  16. Lepetit, V., Fua, P.: Monocular model-based 3D tracking of rigid objects: a survey. Found. Trends Comput. Graph. Vis. 1(1), 1–89 (2005)

    Article  Google Scholar 

  17. Li, P.: An efficient particle filter based tracking method using graphics processing unit (GPU). J. Signal Process. Syst. 68(3), 317–332 (2012)

    Article  Google Scholar 

  18. Li, T., Sun, S., Sattar, T.P., Corchado, J.M.: Fight sample degeneracy and impoverishment in particle filters: a review of intelligent approaches. Expert Syst. Appl. 4(8), 3944–3954 (2014)

    Article  Google Scholar 

  19. Lopez-Mendez, A., Alcoverro, M., Pardas, M., Casas, J.R.: Real-time upper body tracking with online initialization using a range sensor. In: IEEE International Conference on Computer Vision Workshops (ICCV Workshops) (2011)

  20. Michely, P., Chestnutty, J., Kagamiz, S., Nishiwakiz, K., Kuffneryz, J., Kanade, T.: GPU-accelerated real-time 3D tracking for humanoid autonomy. In: Proceedings of the JSME Robotics and Mechatronics Conference (ROBOMEC’08) (2008)

  21. Migniot, C., Ababsa, F.: Hybrid 3D–2D human tracking in a top view. J. Real-Time Image Process. (2014). doi:10.1007/s11554-014-0429-7

  22. Mohedano, R., García, N., Salgado, L., Jaureguizar, F.: 3D tracking using multi-view based particle filters. Lect. Notes Comput. Sci. 5259, 785–795 (2008)

    Article  Google Scholar 

  23. Montemayor, A.S., Pantrigo, J.J., Sánchez, A., Fernández, F.: Particle filter on GPUs for real-time tracking. In: Proceedings of the ACM SIGGRAPH (Research Poster), Los Angeles, pp. 94 (2004)

  24. Montemayor, A.S., Pantrigo, J.J., Cabido, R., Payne, B.R., Sánchez, A., Fernández, F.: Improving GPU particle filter with shader model 3.0 for visual tracking. In: Proceedings of the ACM SIGGRAPH (Research Poster), Boston (2006)

  25. NVIDIA Corp.: CUDA C Programming Guide v. 5.5 (2013)

  26. Pantrigo, J.J., Hernández, J., Sánchez, A.: Multiple and variable target visual tracking for video surveillance applications. Pattern Recognit. Lett. 31(12), 1577–1590 (2010)

    Article  Google Scholar 

  27. Prisacariu, V.A., Reid, I.D.: PWP3D: real-time segmentation and tracking of 3D objects. Int. J. Comput. Vis. 98(3), 335–354 (2012)

    Article  MathSciNet  Google Scholar 

  28. Petit, A., Marchand, E., Kanani, K.: A robust model-based tracker combining geometrical and color edge information. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’13) (2013)

  29. Rymut, B., Kwolek, B.: Real-time multiview human body tracking using GPU-accelerated PSO. In: Proceedings of International Conference on Parallel Processing and Applied Mathematics (PPAM’13). Lecture Notes in Computer Science (2014)

  30. Rymut, B., Kwolek, B.: Real-time multiview human pose tracking using graphics processing unit-accelerated particle swarm optimization, CCPE. Wiley, New York (2014)

  31. Tang, X., Su, J., Zhao, F., Zhou, J., Wei, P.: Particle filter track-before-detect implementation on GPU. EURASIP J. Wirel. Commun. Netw. 2013, 38 (2013)

    Article  Google Scholar 

  32. Tyagi, A., Keck, M., Davis, J.W., Potamianos, G.: Kernel-based 3D tracking. In: Proceedings of the IEEE International Workshop on Visual Surveillance (2007)

  33. Xie, C., Tana, J., Chenc, P., Zhangb, J., Hea, L.: Collaborative object tracking model with local sparse representation. J. Vis. Commun. Image Represent. 25(2), 423–434 (2014)

    Article  Google Scholar 

  34. Zotkin, D., Duraiswami, R., Davis, L.: Joint audio-visual tracking using particle filters. EURASIP J. Appl. Signal Process. 11, 1154–1164 (2002)

    MATH  Google Scholar 

Download references

Acknowledgments

This research has been partially supported by the Spanish Government Projects Refs. TIN2011-28151 and TIN2014-57633 and NVIDIA Professor Partnership Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio S. Montemayor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Concha, D., Cabido, R., Pantrigo, J.J. et al. Performance evaluation of a 3D multi-view-based particle filter for visual object tracking using GPUs and multicore CPUs. J Real-Time Image Proc 15, 309–327 (2018). https://doi.org/10.1007/s11554-014-0483-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-014-0483-1

Keywords

Navigation