Abstract
The object tracking problem is a key one in computer vision, and it is critical in a variety of applications such as guided missiles, unmanned aerial vehicles, and video surveillance. Despite several types of research on visual tracking, there are still a number of challenges during the tracking process, including computationally intensive tasks that make real-time object tracking impossible. By offloading computation to the graphics processing unit, we may overcome the processing limitations of visual tracking algorithms (GPU). In this work, object tracking algorithms that use GPU parallel computing are summarized. Firstly, the related works are briefly discussed. Secondly, object trackers are classified, summarized, and analyzed from two aspects: Single Object Tracking(SOT) and Multiple Object Tracking (MOT). Finally, we’ll go through parallel computing—what it is and how it’s used, as well as a strategy for designing a parallel algorithm, various types of methods for analyzing parallel algorithm performance for parallel computers, and how to reformulate computational issues in the language of graphics cards.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
O. Appiah, M. Asante, J.B. Hayfron-Acquah, Improved approximated median filter algorithm for real-time computer vision applications. J. King Saud Univ. - Comput. Inf. Sci. (2020)
S. Arabi, A. Haghighat, A. Sharma, A deep-learning-based computer vision solution for construction vehicle detection. Comput.-Aided Civil Infrastruct. Eng. 35(7), 753–767 (2020)
L. Barba-Guaman, J.E. Naranjo, A. Ortiz, Deep learning framework for vehicle and pedestrian detection in rural roads on an embedded GPU. Electronics 9(4), 589 (2020)
S. Bhattacharjee, D.M. Chakkaravarhty, M. Chakkaravarty, L.B.A. Rahim, A.W. Ramadhani, A GPU unified platform to secure big data transportation using an error-prone elliptic curve cryptography, in Data Management, Analytics and Innovation (Springer Singapore, 2020), pp. 263–280
A. Blug, D.J. Regina, S. Eckmann, M. Senn, A. Bertz, D. Carl, C. Eberl, Real-time GPU-based digital image correlation sensor for marker-free strain-controlled fatigue testing. Appl. Sci. 9(10), 2025 (2019)
M. Cao, W. Jia, S. Li, Y. Li, L. Zheng, X. Liu, GPU-accelerated feature tracking for 3d reconstruction. Opt. & Laser Technol. 110, 165–175 (2019)
B.X. Chen, J. Tsotsos, Fast visual object tracking using ellipse fitting for rotated bounding boxes, in 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW) (IEEE, 2019)
X. Chen, B. Yan, J. Zhu X. Yang, H. Lu, Transformer Tracking (Dong Wang, 2021)
K. Choi, D. Joo, J. Kim, Kapre: on-gpu audio preprocessing layers for a quick implementation of deep neural network models with keras (2017)
P. Chu, H. Ling, Famnet: joint learning of feature, affinity and multi-dimensional assignment for online multiple object tracking (2019)
P. Dai, R. Weng, W. Choi, C. Zhang, Z. He, W. Ding, Learning a proposal classifier for multiple object tracking (2021)
A. Forero, F. Calderon, Vehicle and pedestrian video-tracking with classification based on deep convolutional neural network, in XXII Symposium on Image (Signal Processing and Artificial Vision (STSIVA) (IEEE, 2019), p. 2019
I. Foster, Designing and Building Parallel Programs: Concepts and Tools for Parallel Software Engineering (Addison-Wesley, Reading, Mass, 1995)
R. Greenlaw, Limits to Parallel Computation: P-Completeness Theory (Oxford University Press, New York, 1995)
S. Jiang, B. Xu, J. Zhao, F. Shen, Faster and simpler siamese network for single object tracking (2021)
P. Kang, S. Lim, A taste of scientific computing on the GPU-accelerated edge device. IEEE Access 8, 208337–208347 (2020)
D. Kim, H. Kim, J. Shin, Y. Mok, J. Paik, Real-time multiple pedestrian tracking based on object identification, in 2019 IEEE 9th International Conference on Consumer Electronics (ICCE-Berlin) (IEEE, 2019)
D.E. Knuth, Computer programming as an art. Commun. ACM 17(12), 667–673 (1974)
S. Kulik, A. Shtanko, Using convolutional neural networks for recognition of objects varied in appearance in computer vision for intellectual robots. Proc. Comput. Sci. 169, 164–167 (2020)
D.-H. Lee, One-shot scale and angle estimation for fast visual object tracking. IEEE Access 7, 55477–55484 (2019)
D-H. Lee. CNN-based single object detection and tracking in videos and its application to drone detection. Multimedia Tools and Applications (2020)
F. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes (M. Kaufmann Publishers, San Mateo, Calif, 1992)
J. Liang, A. Handa, K. Van Wyk, V. Makoviychuk, O. Kroemer, D. Fox, In-hand object pose tracking via contact feedback and GPU-accelerated robotic simulation (2020)
F. Luo, S. Wang, S. Wang, X. Zhang, S. Ma, W. Gao, GPU-based hierarchical motion estimation for high efficiency video coding. IEEE Trans. Multimed. 21(4), 851–862 (2019)
Y. Mao, Z. He, Z. Ma, X. Tang, Z. Wang, Efficient convolution neural networks for object tracking using separable convolution and filter pruning. IEEE Access 7, 106466–106474 (2019)
R. Santiago T. De Menezes, J.V. Alves Luiz, A.M. Henrique-Alves, R.M. Santa Cruz, H. Maia, Mice tracking using the YOLO algorithm, in Anais do Seminário Integrado de Software e Hardware (SEMISH 2020). Sociedade Brasileira de Computação - SBC (2020)
I. Mutis, A. Ambekar, V. Joshi, Real-time space occupancy sensing and human motion analysis using deep learning for indoor air quality control. Autom. Construct. 116, 103237 (2020)
K. Nalaie, R. Zheng, Deepscale: an online frame size adaptation framework to accelerate visual multi-object tracking (2021)
Stan Openshaw, High Performance Computing and the Art of Parallel Programming: An Introduction for Geographers, Social scientists, and Engineers (Routledge, London New York, 2000)
H.A. Peelle, To teach newton’s square root algorithm. ACM SIGAPL APL Quote Quad 5(4), 48–50 (1974)
O.E. Perez-Cham, C. Puente, C. Soubervielle-Montalvo, G. Olague, C.A. Aguirre-Salado, A.S. Nuñez-Varela, Parallelization of the honeybee search algorithm for object tracking. Appl. Sci. 10(6), 2122 (2020)
J. Shin, H. Kim, D. Kim, J. Paik, Fast and robust object tracking using tracking failure detection in kernelized correlation filter. Appl. Sci. 10(2), 713 (2020)
S. Sun, N. Akhtar, H. Song, A. Mian, M. Shah, Deep affinity network for multiple object tracking (2018)
S. Sun, N. Akhtar, X. Song, H. Song, A. Mian, M. Shah, Simultaneous detection and tracking with motion modelling for multiple object tracking, in Computer Vision – ECCV 2020 (Springer International Publishing, 2020), pp. 626–643
S. Sun, Y. Yin, X. Wang, X. De, Robust visual detection and tracking strategies for autonomous aerial refueling of UAVs. IEEE Trans. Instrum. Meas. 68(12), 4640–4652 (2019)
U. Taygan, A. Ozsoy, Performance analysis and GPU parallelisation of ECO object tracking algorithm. New Trends Issues Proc. Adv. Pure Appl. Sci. 12, 109–118 (2020)
O. Urbann, O. Bredtmann, M. Otten, J-P. Richter, T. Bauer, D. Zibriczky, Online and real-time tracking in a surveillance scenario (2021)
Y. Xu, M. Li, L.Cui, S. Huang, F. Wei, M. Zhou, LayoutLM: pre-training of text and layout for document image understanding, in Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (ACM, 2020)
J. Yin, W. Wang, Q. Meng, R. Yang, J. Shen, A unified object motion and affinity model for online multi-object tracking (2020)
Y-C. Yoon, D.Y. Kim, Y.M. Song, K. Yoon, M. Jeon, Online multiple pedestrians tracking using deep temporal appearance matching association (2019)
Yu. Hongyang, G. Li, S. Li, B. Zhong, H. Yao, Q. Huang, Conditional GAN based individual and global motion fusion for multiple object tracking in UAV videos. Pattern Recognit. Lett. 131, 219–226 (2020)
A. Yusuf, S. Alawneh, GPU Implementation for Automatic Lane Tracking in Self-Driving Cars. In SAE Technical Paper Series (SAE International, 2019)
J. Zhang, S. Zhou, J. Wang, D. Huang, Frame-wise motion and appearance for real-time multiple object tracking (2019)
Q. Zhang, C. Bai, Z. Liu, L.T. Yang, Yu. Hang, J. Zhao, H. Yuan, A GPU-based residual network for medical image classification in smart medicine. Inf. Sci. 536, 91–100 (2020)
Y. Zhang, Y. Tang, B. Fang, Z. Shang, Multi-object tracking using deformable convolution networks with tracklets updating. Int. J. Wavelets Multiresolut. Inf. Process. 17(06), 1950042 (2019)
P. Zhu, L. Wen, D. Dawei, X. Bian, H. Qinghua, H. Ling, Past, present and future, Vision meets drones (2020)
Y. Zou, W. Zhang, W. Weng, Z. Meng, Multi-vehicle tracking via real-time detection probes and a Markov decision process policy. Sensors 19(6), 1309 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Mohamed, I., Elhenawy, I., Salah, A. (2023). A Survey on GPU-Based Visual Trackers. In: Hosny, K.M., Salah, A. (eds) Recent Advances in Computer Vision Applications Using Parallel Processing . Studies in Computational Intelligence, vol 1073. Springer, Cham. https://doi.org/10.1007/978-3-031-18735-3_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-18735-3_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-18734-6
Online ISBN: 978-3-031-18735-3
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)