Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Automatic optic disk detection in retinal images using hybrid vessel phase portrait analysis

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

We propose vessel vector-based phase portrait analysis (VVPPA) and a hybrid between VVPPA and a clustering method proposed earlier for automatic optic disk (OD) detection called the vessel transform (VT). The algorithms are based primarily on the location and direction of retinal blood vessels and work equally well on fine and poor quality images. To localize the OD, the direction vectors derived from the vessel network are constructed, and points of convergence of the resulting vector field are examined by phase portrait analysis. The hybrid method (HM) uses a set of rules acquired from the decision model to alternate the use of VVPPA and VT. To identify the OD contour, the scale space (SS) approach is integrated with VVPPA, HM, and the circular approximation (SSVVPPAC and SSHMC). We test the proposed combination against state-of-the-art OD detection methods. The results show that the proposed algorithms outperform the benchmark methods, especially on poor quality images. Specifically, the HM gets the highest accuracy of 98% for localization of the OD regardless of the image quality. Testing the segmentation routines SSVVPPAC and SSHMC against the conventional methods shows that SSHMC performs better than the existing methods, achieving the highest PPV of 71.81% and the highest sensitivity of 70.67% for poor quality images. Furthermore, the HM can supplement practically any segmentation model as long as it offers multiple OD candidates. In order to prove this claim, we test the efficiency of the HM in detecting retinal abnormalities in a real clinical setting. The images have been obtained by portable lens connected to a smart phone. In detecting the abnormalities related to diabetic retinopathy (DR), the algorithm provided 94.67 and 98.13% for true negatives and true positives, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Bourne RR, Sukudom P, Foster PJ, Tantisevi V, Jitapunkul S, Lee PS, Johnson GJ, Rojanapongpun P (2003) Prevalence of glaucoma in Thailand: a population based survey in Rom Klao District, Bangkok. Br J Ophthalmol 87:1069–1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. World Health Organization (2016) WHO|Diabetes. In: fact sheet of WHO Media Centre. http://www.who.int/mediacentre/factsheets/fs312/ en/. Accessed 30 July 2016

  3. MacGillivray TJ, Trucco E, Cameron JR, Dhillon B, Houston JG, van Beek EJ (2014) Retinal imaging as a source of biomarkers for diagnosis, characterization and prognosis of chronic illness or long-term conditions. Br J Radiol 87:20130832. doi:10.1259/bjr.20130832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hoover A, Goldbaum M (2003) Locating the optic nerve in a retinal image using the fuzzy convergence of the blood vessels. IEEE Trans Med Imaging 22:951–958

    Article  PubMed  Google Scholar 

  5. Li H, Chutatape O (2004) Automated feature extraction in color retinal images by a model based approach. IEEE Trans Biomed Eng 51:246–254

    Article  PubMed  Google Scholar 

  6. Lalonde M, Beaulieu M, Gagnon L (2001) Fast and robust optic disc detection using pyramidal decomposition and Hausdorff-based template matching. IEEE Trans Med Imaging 20:1193–1200

    Article  CAS  PubMed  Google Scholar 

  7. Dehghani A, Moghaddam HA, Moin M-S (2012) Optic disc localization in retinal images using histogram matching. EURASIP J Image Video Proc 2012:1–11. doi:10.1186/1687-5281-2012-19

    Article  Google Scholar 

  8. Lowell J, Hunter A, Steel D, Basu A, Ryder R, Fletcher E, Kennedy L (2004) Optic nerve head segmentation. IEEE Trans Med Imaging 23:256–264

    Article  PubMed  Google Scholar 

  9. Winder RJ, Morrow PJ, McRitchie IN, Bailie JR, Hart PM (2009) Algorithms for digital image processing in diabetic retinopathy. Comput Med Imaging Graph 33:608–622

    Article  CAS  PubMed  Google Scholar 

  10. Li H, Chutatape O (2003) A model-based approach for automated feature extraction in fundus images. In: Ninth IEEE International Conference on Computer Vision, Nice, France. pp 394–399

  11. Li H, Chutatape O (2003) Boundary detection of optic disk by a modified ASM method. Pattern Recogn 36:2093–2104

    Article  Google Scholar 

  12. Morales S, Naranjo V, Angulo U, Alcaniz M (2013) Automatic detection of optic disc based on PCA and mathematical morphology. IEEE Trans Med Imaging 32:786–796

    Article  PubMed  Google Scholar 

  13. Hsiao H-K, Liu C-C, Yu C-Y, Kuo S-W, Yu S-S (2012) A novel optic disc detection scheme on retinal images. Expert Syst Appl 39:10600–10606

    Article  Google Scholar 

  14. Sinthanayothin C, Boyce J, Cook H, Williamson T (1999) Automated localisation of the optic disc, fovea, and retinal blood vessels from digital colour fundus images. Br J Ophthalmol 83:902–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Akram UM, Khan SA (2012) Automated detection of dark and bright lesions in retinal images for early detection of diabetic retinopathy. J Med Syst 36:3151–3162

    Article  PubMed  Google Scholar 

  16. Lu S, Liu J, Lim JH, Zhang Z, Tan NM, Wong WK, Li H, Wong TY (2010) Automatic optic disc segmentation based on image brightness and contrast. Proc SPIE 7623:76234J-76234J-8. doi:10.1117/12.844654

    Google Scholar 

  17. Esmaeili M, Rabbani H, Dehnavi AM, Dehghani A (2012) Automatic detection of exudates and optic disk in retinal images using curvelet transform. IET Image Process 6:1005–1013

    Article  Google Scholar 

  18. Esmaeili M, Rabbani H, Dehnavi AM (2012) Automatic optic disk boundary extraction by the use of curvelet transform and deformable variational level set model. Pattern Recogn 45:2832–2842

    Article  Google Scholar 

  19. Shahbeig S, Pourghassem H (2013) Fast and automatic algorithm for optic disc extraction in retinal images using principle-component-analysis-based preprocessing and curvelet transform. J Opt Soc Am A Opt Image Sci Vis 30:13–21

    Article  PubMed  Google Scholar 

  20. Pereira C, Goncalves L, Ferreira M (2013) Optic disc detection in color fundus images using ant colony optimization. Med Biol Eng Comput 51:295–303

    Article  PubMed  Google Scholar 

  21. Ramakanth SA, Babu RV (2014) Approximate nearest neighbour field based optic disk detection. Comput Med Imaging Graph 38:49–56

    Article  PubMed  Google Scholar 

  22. Sopharak A, Uyyanonvara B, Barman S, Williamson TH (2008) Automatic detection of diabetic retinopathy exudates from non-dilated retinal images using mathematical morphology methods. Comput Med Imaging Graph 32:720–727

    Article  PubMed  Google Scholar 

  23. Azuara-Blanco A, Harris A, Cantor L, Abreu M, Weinland M (1998) Effects of short term increase of intraocular pressure on optic disc cupping. Br J Ophthalmol 82:880–883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhu X, Rangayyan RM, Ells AL (2010) Detection of the optic nerve head in fundus images of the retina using the Hough transform for circles. J Digit Imaging 23:332–341

    Article  PubMed  Google Scholar 

  25. Lu S (2011) Accurate and efficient optic disc detection and segmentation by a circular transformation. IEEE Trans Med Imaging 30:2126–2133

    Article  PubMed  Google Scholar 

  26. Welfer D, Scharcanski J, Kitamura CM, Dal Pizzol MM, Ludwig LW, Marinho DR (2010) Segmentation of the optic disk in color eye fundus images using an adaptive morphological approach. Comput Biol Med 40:124–137

    Article  PubMed  Google Scholar 

  27. Youssif AR, Ghalwash AZ, Ghoneim AR (2008) Optic disc detection from normalized digital fundus images by means of a vessels’ direction matched filter. IEEE Trans Med Imaging 27:11–18

    Article  CAS  PubMed  Google Scholar 

  28. Mahfouz AE, Fahmy AS (2010) Fast localization of the optic disc using projection of image features. IEEE Trans Image Process 19:3285–3289

    Article  PubMed  Google Scholar 

  29. Carmona EJ, Rincon M, Garcia-Feijoo J, Martinez-de-la-Casa JM (2008) Identification of the optic nerve head with genetic algorithms. Artif Intell Med 43:243–259

    Article  PubMed  Google Scholar 

  30. Giachetti A, Ballerini L, Trucco E (2014) Accurate and reliable segmentation of the optic disc in digital fundus images. J Med Image 1:024001. doi:10.1117/1.JMI.1.2.024001

    Article  Google Scholar 

  31. Aquino A, Gegúndez ME, Marín D (2010) Automated optic disc detection in retinal images of patients with diabetic retinopathy and risk of macular edema. Int J Biol Life Sci 8:353–358

    Google Scholar 

  32. Akita K, Kuga H (1982) A computer method of understanding ocular fundus images. Pattern Recogn 15:431–443

    Article  Google Scholar 

  33. Chrástek R, Skokan M, Kubecka L, Wolf M, Donath K, Jan J, Michelson G, Niemann H (2004) Multimodal retinal image registration for optic disk segmentation. Methods Inf Med 43:336–342

    PubMed  Google Scholar 

  34. Kavitha D, Shenbaga Devi S (2005) Automatic detection of optic disc and exudates in retinal images. In: IEEE Proceedings of 2005 International Conference on Intelligent Sensing and Information Processing, Chennai. pp 501–506

  35. Foracchia M, Grisan E, Ruggeri A (2004) Detection of optic disc in retinal images by means of a geometrical model of vessel structure. IEEE Trans Med Imaging 23:1189–1195

    Article  CAS  PubMed  Google Scholar 

  36. Niemeijer M, Abramoff MD, van Ginneken B (2009) Fast detection of the optic disc and fovea in color fundus photographs. Med Image Anal 13:859–870

    Article  PubMed  PubMed Central  Google Scholar 

  37. Dehghani A, Moin M-S, Saghafi M (2012) Localization of the optic disc center in retinal images based on the Harris corner detector. Biomed Eng Lett 2:198–206

    Article  Google Scholar 

  38. Zhang D, Zhao Y (2016) Novel accurate and fast optic disc detection in retinal images with vessel distribution and directional characteristics. IEEE J Biomed Health Inform 20:333–342

    Article  PubMed  Google Scholar 

  39. Mendonca AM, Sousa A, Mendonca L, Campilho A (2013) Automatic localization of the optic disc by combining vascular and intensity information. Comput Med Imaging Graph 37:409–417

    Article  PubMed  Google Scholar 

  40. Semashko AS, Krylov AS, Rodin AS (2011) Using blood vessels location information in optic disk segmentation. In: Maino G, Foresti GL (eds) Image analysis and processing—ICIAP 2011. Springer, Berlin, pp 384–393

    Chapter  Google Scholar 

  41. Rangayyan RM, Zhu X, Ayres FJ, Ells AL (2010) Detection of the optic nerve head in fundus images of the retina with Gabor filters and phase portrait analysis. J Digit Imaging 23:438–453

    Article  PubMed  PubMed Central  Google Scholar 

  42. Staal J, Abramoff MD, Niemeijer M, Viergever MA, van Ginneken B (2004) Ridge-based vessel segmentation in color images of the retina. IEEE Trans Med Imaging 23:501–509

    Article  PubMed  Google Scholar 

  43. Hoover A, Goldbaum M (1975) The STructure Analysis of the REtina (STARE) project. http://www.ces.clemson.edu/~ahoover/stare. Accessed 18 Feb 2013

  44. Alshayeji M, Al-Roomi SA, Abed S (2017) Optic disc detection in retinal fundus images using gravitational law-based edge detection. Med Biol Eng Comput 55:935–948

    Article  PubMed  Google Scholar 

  45. Rahebi J, Hardalaç F (2016) A new approach to optic disc detection in human retinal images using the firefly algorithm. Med Biol Eng Comput 54:453–461

    Article  PubMed  Google Scholar 

  46. Tan JH, Acharya UR, Bhandary SV, Chua KC, Sivaprasad S (2017) Segmentation of optic disc, fovea and retinal vasculature using a single convolutional neural network. J Comput Sci. doi:10.1016/j.jocs.2017.02.006

  47. Harangi B, Hajdu A (2015) Detection of the optic disc in fundus images by combining probability models. Comput Biol Med 65:10–24

    Article  PubMed  Google Scholar 

  48. Maity M, Das DK, Dhane DM, Chakraborty C, Maiti A (2016) Fusion of entropy-based thresholding and active contour model for detection of exudate and optic disc in color fundus images. J Med Biol Eng 36:795–809

    Article  Google Scholar 

  49. Mary MCVS, Rajsingh EB, Jacob JKK, Anandhi D, Amato U, Selvan SE (2015) An empirical study on optic disc segmentation using an active contour model. Biomed Signal Process Control 18:19–29

    Article  Google Scholar 

  50. Wu X, Dai B, Bu W (2016) Optic disc localization using directional models. IEEE Trans Image Process 25:4433–4442

    Article  Google Scholar 

  51. Xiong L, Li H (2016) An approach to locate optic disc in retinal images with pathological changes. Comput Med Imaging Graph 47:40–50

    Article  PubMed  Google Scholar 

  52. Díaz-Pernil D, Fondón I, Peña-Cantillana F, Gutiérrez-Naranjo MA (2016) Fully automatized parallel segmentation of the optic disc in retinal fundus images. Pattern Recogn Lett 83:99–107

    Article  Google Scholar 

  53. Rodrigues LC, Marengoni M (2017) Segmentation of optic disc and blood vessels in retinal images using wavelets, mathematical morphology and Hessian-based multi-scale filtering. Biomed Signal Process Control 36:39–49

    Article  Google Scholar 

  54. Bharkad S (2017) Automatic segmentation of optic disk in retinal images. Biomed Signal Process Control 31:483–498

    Article  Google Scholar 

  55. Panda R, Puhan NB, Panda G (2017) Robust and accurate optic disk localization using vessel symmetry line measure in fundus images. Biocybern Biomed Eng 37:466–476

    Article  Google Scholar 

  56. Muangnak N, Aimmanee P, Makhanov S, Uyyanonvara B (2015) Vessel transform for automatic optic disk detection in retinal images. IET Image Process 9:743–750

    Article  Google Scholar 

  57. Duanggate C, Uyyanonvara B, Makhanov SS, Barman S, Williamson T (2011) Parameter-free optic disc detection. Comput Med Imaging Graph 35:51–63

    Article  PubMed  Google Scholar 

  58. Suykens JAK, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9:293–300

    Article  Google Scholar 

  59. Chucherd S, Rodtook A, Makhanov SS (2010) Phase portrait analysis for multiresolution generalized gradient vector flow. IEICE Trans Inf Syst E93-D:2822–2835. doi:10.1587/transinf.E93.D.2822

    Article  Google Scholar 

  60. Witkin A (1984) Scale-space filtering: a new approach to multi-scale description. In: ICASSP ‘84. IEEE International Conference on Acoustics, Speech, and Signal Processing, San Diego, pp 150–153

  61. Lindeberg T (1994) Scale-space theory in computer vision. Springer US, US

    Book  Google Scholar 

  62. Chang C-C, Lin C-J (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2:1–27. doi:10.1145/1961189.1961199

    Article  Google Scholar 

  63. Sekhar S, Al-Nuaimy W, Nandi AK (2008) Automated localisation of retinal optic disk using Hough transform. In: 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Paris, pp 1577–1580

  64. Ravishankar S, Jain A, Mittal A (2009) Automated feature extraction for early detection of diabetic retinopathy in fundus images. In: IEEE Conference on Computer Vision and Pattern Recognition, Miami, pp 210–217

  65. Welfer D, Scharcanski J, Marinho DR (2013) A morphologic two-stage approach for automated optic disk detection in color eye fundus images. Pattern Recogn Lett 34:476–485

    Article  Google Scholar 

  66. Akram MU, Tariq A, Khan SA, Javed MY (2014) Automated detection of exudates and macula for grading of diabetic macular edema. Comput Methods Prog Biomed 114:141–152

    Article  Google Scholar 

  67. Volk (2016) Volk iNview retinal camera. In: Volk Optical Inc. https://volk.com/index.php/volk-products/ophthalmic-cameras/volk-inview.html. Accessed 30 July 2016

  68. Ibrahim S, Chowriappa P, Dua S, Acharya UR, Noronha K, Bhandary S, Mugasa H (2015) Classification of diabetes maculopathy images using data-adaptive neuro-fuzzy inference classifier. Med Biol Eng Comput 53:1345–1360

    Article  PubMed  Google Scholar 

  69. Mookiah MR, Acharya UR, Chandran V, Martis RJ, Tan JH, Koh JE, Chua CK, Tong L, Laude A (2015) Application of higher-order spectra for automated grading of diabetic maculopathy. Med Biol Eng Comput 53:1319–1331

    Article  PubMed  Google Scholar 

  70. ter Haar Romeny BM, Bekkers EJ, Zhang J, Abbasi-Sureshjani S, Huang F, Duits R, Dashtbozorg B, Berendschot TTJM, Smit-Ockeloen I, Eppenhof KAJ, Feng J, Hannink J, Schouten J, Tong M, Wu H, van Triest HW, Zhu S, Chen D, He W, Xu L, Han P, Kang Y (2016) Brain-inspired algorithms for retinal image analysis. Mach Vis Appl 27:1117–1135

    Article  Google Scholar 

  71. Abbas Q, Fondon I, Sarmiento A, Jiménez S, Alemany P (2017) Automatic recognition of severity level for diagnosis of diabetic retinopathy using deep visual features. Med Biol Eng Comput. doi:10.1007/s11517-017-1638-6

  72. Prasanna P, Jain S, Bhagat N, Madabhushi A (2013) Decision support system for detection of diabetic retinopathy using smartphones. In: 7th International Conference on Pervasive Computing Technologies for Healthcare and Workshops. Venice 2013:176–179

    Google Scholar 

  73. Xu X, Ding W, Wang X, Cao R, Zhang M, Lv P, Xu F (2016) Smartphone-based accurate analysis of retinal vasculature towards point-of-care diagnostics. Sci Rep 6:34603. doi:10.1038/srep34603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bastawrous A, Giardini ME, Bolster NM, Peto T, Shah N, Livingstone IA, Weiss HA, Hu S, Rono H, Kuper H, Burton M (2016) Clinical validation of a smartphone-based adapter for optic disc imaging in Kenya. JAMA Ophthalmol 134:151–158

    Article  PubMed  PubMed Central  Google Scholar 

  75. Rajalakshmi R, Arulmalar S, Usha M, Prathiba V, Kareemuddin KS, Anjana RM, Mohan V (2015) Validation of smartphone based retinal photography for diabetic retinopathy screening. PLoS One 10:e0138285. doi:10.1371/journal.pone.0138285

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to gratefully acknowledge the financial support from Thailand Research Fund (TRF), grant number RSA5780034, the Center of Excellence in Biomedical Engineering of Thammasat University, and the Thai Royal Government Scholarship, the Ministry of Science and Technology, National Research University. We would also like to thank the Department of Ophthalmology, Faculty of Medicine of Thammasat University for their help in collecting the data and conducting the clinical experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pakinee Aimmanee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muangnak, N., Aimmanee, P. & Makhanov, S. Automatic optic disk detection in retinal images using hybrid vessel phase portrait analysis. Med Biol Eng Comput 56, 583–598 (2018). https://doi.org/10.1007/s11517-017-1705-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-017-1705-z

Keywords

Navigation