Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Classification of diabetes maculopathy images using data-adaptive neuro-fuzzy inference classifier

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Prolonged diabetes retinopathy leads to diabetes maculopathy, which causes gradual and irreversible loss of vision. It is important for physicians to have a decision system that detects the early symptoms of the disease. This can be achieved by building a classification model using machine learning algorithms. Fuzzy logic classifiers group data elements with a degree of membership in multiple classes by defining membership functions for each attribute. Various methods have been proposed to determine the partitioning of membership functions in a fuzzy logic inference system. A clustering method partitions the membership functions by grouping data that have high similarity into clusters, while an equalized universe method partitions data into predefined equal clusters. The distribution of each attribute determines its partitioning as fine or coarse. A simple grid partitioning partitions each attribute equally and is therefore not effective in handling varying distribution amongst the attributes. A data-adaptive method uses a data frequency-driven approach to partition each attribute based on the distribution of data in that attribute. A data-adaptive neuro-fuzzy inference system creates corresponding rules for both finely distributed and coarsely distributed attributes. This method produced more useful rules and a more effective classification system. We obtained an overall accuracy of 98.55 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ang MH, Acharya, UR, Sree SV, Lim TC, Suri, JS (2011) Computer-based identification of diabetic maculopathy stages using fundus images. In: Multi modality state-of-the-art medical image segmentation and registration methodologies. Springer US. pp 377–399

  2. Acharya UR, Dua S, Du X, Sree SV, Chua CK (2011) Automated diagnosis of glaucoma using texture and higher order spectra features. Inf Technol Biomed IEEE Trans 15(3):449–455

    Article  Google Scholar 

  3. Acharya UR, Sree VS, Saba L, Molinari F, Guerriero S, Suri JS (2012) Ovarian tumor characterization and classification using ultrasound: a new on-line paradigm. J Digit Imaging 26(3):544–553

    Article  PubMed Central  Google Scholar 

  4. Acharya UR, Mookiah MRK, Sree SV, Yanti R, Martis R, Saba L, Suri JS (2013) Evolutionary algorithm-based classifier parameter tuning for automatic ovarian cancer tissue characterization and classification. In: Saba L, Acharya UR, Guerriero S, Suri JS (eds) Ovarian neoplasm imaging. Springer. pp 425–440

  5. Akram MU, Akhtar M, Javed MY (2012) An automated system for the grading of diabetic maculopathy in fundus images. In: Huang T, Zeng Z, Li C, Leung C (eds) Neural information processing. Springer, Berlin. pp 36–43

  6. Alipour SHM, Rabbani H, Akhlaghi M, Dehnavi AM, Javanmard SH (2012) Analysis of foveal avascular zone for grading of diabetic retinopathy severity based on curvelet transform. Graefe’s Arch Clin Exp Ophthalmol 250(11):1607–1614

    Article  Google Scholar 

  7. Azeez D, Ali M, Gan K, Saiboon I, (2013) Comparison of adaptive neuro-fuzzy inference system and artificial neutral networks model to categorize patients in the emergency department. Springer 2013 2:416, vol. 2, no. 1, pp 1–10

  8. Bishop CM (1995) Neural networks for pattern recognition. Oxford University Press, Oxford

    Google Scholar 

  9. Bracewell RN, Bracewell RN (1986) The fourier transform and its applications, vol 31999. McGraw-Hill, New York

    Google Scholar 

  10. Chowriappa P, Dua S, Acharya UR, Mookiah MRK (2013) Ensemble selection for feature-based classification of diabetic maculopathy images. Comput Biol Med 43(12):2156–2162

    Article  PubMed  Google Scholar 

  11. Chua CK, Mookiah MRK, Koh JEW, Acharya UR, Lim CM, Laude A, Ng EYK (2013) Automated diagnosis of maculopathy stages using texture features. Int J Integr Care 13:1–8

    Google Scholar 

  12. Cintra ME, de Arruda Camargo H, Martin T (2009) Optimizing the fuzzy granulation of attribute domains. IFSA/EUSFLAT Conf. pp 742–747

  13. Deepak KS, Sivaswamy J (2012) Automatic assessment of macular edema from color retinal images. Med Imaging, IEEE Trans 31(3):766–776

    Article  Google Scholar 

  14. Dua S, Acharya UR, Chowriappa P, Sree SV (2012) Wavelet-based energy features for glaucomatous image classification. Inf Technol Biomed IEEE Trans 16(1):80–87

    Article  Google Scholar 

  15. Fadzil MA, Izhar LI, Nugroho H, Nugroho HA (2011) Analysis of retinal fundus images for grading of diabetic retinopathy severity. Med Biol Eng Compu 49(6):693–700

    Article  Google Scholar 

  16. Fleming AD, Goatman KA, Philip S, Prescott GJ, Sharp PF, Olson JA (2010) Automated grading for diabetic retinopathy: a large-scale audit using arbitration by clinical experts. Br J Ophthalmol 94(12):1606–1610

    Article  PubMed  Google Scholar 

  17. Giancardo L, Meriaudeau F, Karnowski TP, Li Y, Garg S, Tobin KW Jr, Chaum E (2012) Exudate-based diabetic macular edema detection in fundus images using publicly available datasets. Med Image Anal 16(1):216–226

    Article  PubMed  Google Scholar 

  18. Hunter A, Lowell JA, Ryder B, Basu A, Steel D (2011) Automated diagnosis of referable maculopathy in diabetic retinopathy screening. In: Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE. pp 3375–3378

  19. Ishibuchi H, Kaisho Y, Nojima Y (2008) Designing fuzzy rule-based classifiers that can visually explain their classification results to human users. In: Genetic and evolving systems, 2008. GEFS 2008. 3rd International Workshop on IEEE. pp 5–10

  20. Jain M (2012) Data adaptive rule-based classification system. M.S. thesis, Louisiana Tech University, USA

  21. Jang JS (1993) ANFIS: adaptive-network-based fuzzy inference system. Syst Man Cybern IEEE Trans 23(3):665–685

    Article  Google Scholar 

  22. Mamdani EH, Assilian S (1975) An experiment in linguistic synthesis with a fuzzy logic controller. Int J Man Mach Stud 7(1):1–13

    Article  Google Scholar 

  23. Mookiah MRK, Acharya UR, Lim C, Petznick A, Suri JS (2012) Data mining technique for automated diagnosis of glaucoma using higher order spectra and wavelet energy features. Knowl Based Syst 33:73–82

    Article  Google Scholar 

  24. Mookiah MRK, Acharya UR, Chua CK, Lim CM, Ng EYK, Laude A (2013) Computer-aided diagnosis of diabetic retinopathy: a review. Comput Biol Med 43(12):2136–2155

    Article  PubMed  Google Scholar 

  25. Nayak J, Bhat PS, Acharya UR (2009) Automatic identification of diabetic maculopathy stages using fundus images. J Med Eng Technol 33(2):119–129

    Article  CAS  PubMed  Google Scholar 

  26. Pharwaha APS, Singh B (2009) Shannon and non-shannon measures of entropy for statistical texture feature extraction in digitized mammograms. Proc World Congr Eng Comput Sci 2:20–22

    Google Scholar 

  27. Punnolil A (2013) A novel approach for diagnosis and severity grading of diabetic maculopathy. Advances in Computing, Communications and Informatics (ICACCI), 2013 International Conference IEEE pp 1230–1235

  28. Siddalingaswamy PC, Prabhu KG (2010) Automatic grading of diabetic maculopathy severity levels. Systems in Medicine and Biology (ICSMB), 2010 International Conference IEEE. pp 331–334

  29. Sugeno M (1985) Industrial applications of fuzzy control. Elsevier, Amsterdam

    Google Scholar 

  30. Tariq A, Akram MU, Shaukat A, Khan SA (2013) Automated detection and grading of diabetic maculopathy in digital retinal images. J Digit Imaging 26(4):803–812

    Article  PubMed Central  PubMed  Google Scholar 

  31. Teng T, Lefley M, Claremont D (2002) Progress towards automated diabetic ocular screening: a review of image analysis and intelligent systems for diabetic retinopathy. Med Biol Eng Comput 40(1):2–13

    Article  CAS  PubMed  Google Scholar 

  32. Xie X, Beni G (1991) A validity measure for fuzzy clustering. IEEE Trans Pattern Anal Mach Intell (PAMI) 13(8):841–847

    Article  Google Scholar 

  33. Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353

    Article  Google Scholar 

Download references

Acknowledgement

The project described was supported in part by Grant Number P20RR016456 from the National Center for Research Resources (NCRR). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NCRR or the National Institutes of Health (NIH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumeet Dua.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, S., Chowriappa, P., Dua, S. et al. Classification of diabetes maculopathy images using data-adaptive neuro-fuzzy inference classifier. Med Biol Eng Comput 53, 1345–1360 (2015). https://doi.org/10.1007/s11517-015-1329-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-015-1329-0

Keywords

Navigation