Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Biological surface modification of titanium surfaces using glow discharge plasma

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

To improve the biological activity of titanium, by using of glow discharge plasma (GDP), albumin-grafted titanium disk have been implemented and carefully studied. Titanium disks were pre-treated with GDP in an environment filled with argon and allylamine gas. Glutaraldehyde was used as a cross-linking agent for albumin grafting. Then, the surface of the albumin-grafted titanium was examined using scanning electron microscopy and X-ray photoelectron spectroscopy. In addition, the static water contact angles of the albumin-grafted titanium disks were measured using goniometry. To observe the effects of albumin adsorption on cell behavior, MG-63 osteoblast-like cells were cultured on the surface-modified titanium disks. Blood coagulation resistance of the modified titanium was monitored and compared to the control titanium disks. The results demonstrated that MG-63 osteoblast-like cells cultured on the albumin-grafted titanium disks expressed better-differentiated morphology compare to cells grown on the control disks. Furthermore, albumin-grafting treatment significantly improved the surface wettability of the titanium disks and resulted in a significantly negative effect on thrombus formation. Based on these results, it was believed that the GDP can potentially improve the biofunctionality of titanium surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alves CM, Yang Y, Carnes DL, Ong JL, Sylvia VL, Deanc DD, Agrawal CM, Reis RL (2007) Modulating bone cells response onto starch-based biomaterials by surface plasma treatment and protein adsorption. Biomaterials 28:307–315

    Article  PubMed  CAS  Google Scholar 

  2. Aronsson BO, Lausmaa J, Kasemo B (1997) Glow discharge plasma treatment for surface cleaning and modification of metallic biomaterials. J Biomed Mater Res 35:49–73

    Article  PubMed  CAS  Google Scholar 

  3. Chang WJ, Ou KL, Lee SY, Chen JY, Abiko Y, Lin CT, Huang HM (2007) Type I collagen grafting on titanium surfaces using low temperature glow discharge. Dent Mater J 27:340–346

    Article  Google Scholar 

  4. Czarnowska E, Wierzchon T, Maranda-Niedbal A, Karczmarewicz E (2000) Improvement of titanium alloy for biomedical applications by nitriding and carbonitriding processes under glow discharge conditions. J Mater Sci Mater Med 11:73–81

    Article  PubMed  CAS  Google Scholar 

  5. do Serro AP, Fernandes AC, de Jesus Vieira Saramago B (2000) Calcium phosphate deposition on titanium surfaces in the presence of fibronectin. J Biomed Mater Res 49:345–352

    Article  PubMed  CAS  Google Scholar 

  6. Gronowicz G, McCarthy MB (1996) Response of human osteoblasts to implant materials: integrin-mediated adhesion. J Orthop Res 14:878–887

    Article  PubMed  CAS  Google Scholar 

  7. Hesby RM, Haganman CR, Stanford CM (1997) Effects of radiofrequency glow discharge on impression material surface wettability. J Prosthet Dent 77:414–422

    Article  PubMed  CAS  Google Scholar 

  8. Ji J, Feng L, Barbosa MA (2001) Stearyl poly(ethylene oxide) grafted surfaces for preferential adsorption of albumin. Biomaterials 22:3015–3023

    Article  PubMed  CAS  Google Scholar 

  9. Kassem M, Rungby J, Mosekilde L, Eriksen EF (1992) Ultrastructure of human osteoblasts and associated matrix in culture. APMIS 100:490–497

    Article  PubMed  CAS  Google Scholar 

  10. Kawai H, Shibata Y, Miyazaki T (2004) Glow discharge plasma pretreatment enhances osteoclast differentiation and survival on titanium plates. Biomaterials 25:1805–1811

    Article  PubMed  CAS  Google Scholar 

  11. Kibayashi H, Teraoka F, Fujimoto S, Nakagawa M, Takahashi J (2005) Surface modification of pure titanium by plasma exposure and its bonding to resin. Dent Mater J 24:53–58

    PubMed  CAS  Google Scholar 

  12. Kottke-Marchant K, Anderson JM, Umemura Y, Marchant RE (1998) Effect of albumin coating on the in vitro blood compatibility of Dacron arterial prostheses. Biomaterials 10:147–155

    Article  Google Scholar 

  13. Lin CC, Cheng HC, Huang CF, Lin CT, Lee SY, Chen CS, Ou KL (2005) Enhancement of biocompatibility on bioactive titanium surface by low-temperature plasma treatment. Jpn J Appl Phys 44:8590–8598

    Article  CAS  Google Scholar 

  14. Liu Q, Cheng XN, Fei HX (2010) Effects of micro-magnetic field at the surface of 316L and NiTi alloy on blood compatibility. Med Biol Eng Comput. doi: 10.1007/s11517-010-0685-z

  15. Martins MCL, Wang D, Ji J, Feng L, Barbosa MA (2003) Albumin and fibrinogen adsorption on PU–PHEMA surfaces. Biomaterials 24:2067–2076

    Article  PubMed  CAS  Google Scholar 

  16. McFarland CD, Filippis CD, Jenkins M, Tunstell A, Rhodes NP, Williams DF, Steele JG (1998) Albumin binding surfaces: in vitro activity. J Biomat Sci Polymer Ed 9:1239–1277

    Google Scholar 

  17. Nelea V, Luo L, Demers CN, Antoniou J, Petit A, Lerouge S, Wertheimer MR, Mwale F (2005) Selective inhibition of type X collagen expression in human mesenchymal stem cell differentiation on polymer substrates surface-modified by glow discharge plasma. J Biomed Mater Res 75A:216–223

    Article  CAS  Google Scholar 

  18. Ozden N, Akaltan F, Suzer S, Akovali G (1999) Time related wettability characteristic of acrylic resin surfaces treated by glow discharge. J Prosthet Dent 82:680–684

    Article  PubMed  CAS  Google Scholar 

  19. Schwarz F, Wieland M, Schwartz Z, Zhao G, Rupp F, Geis-Gerstorfer J, Schedle A, Broggini N, Bornstein MM, Buser D, Ferguson SJ, Becker J, Boyan BD, Cochran DL (2009) Potential of chemically modified hydrophilic surface characteristics to support tissue integration of titanium dental implants. J Biomed Mater Res B 88B:544–557

    Article  CAS  Google Scholar 

  20. Serro AP, Saramago B (2003) Influence of sterilization on the mineralization of titanium implants induced by incubation in various biological model fluids. Biomaterials 24:4749–4760

    Article  PubMed  CAS  Google Scholar 

  21. Sharma CP, Hari PR (1991) Adhesion and stability of blood cells onto polymer substrates: effect of glow discharge. J Biomater Appl 6:72–79

    Article  PubMed  CAS  Google Scholar 

  22. Shibata Y, Hosaka M, Kawai H, Miyazaki T (2002) Glow discharge plasma treatment of titanium plates enhances adhesion of osteoblast-like cells to the plates through the integrin-mediated mechanism. Int J Oral Maxillofac Implant 17:771–777

    Google Scholar 

  23. Stine R, Cole CL, Ainslie KM, Mulvaney SP, Whitman LJ (2007) Formation of primary amines on silicon nitride surfaces: a direct, plasma-based pathway to functionalization. Langmuir 23:4400–4404

    Article  PubMed  CAS  Google Scholar 

  24. Sul YT (2002) Oxidized titanium screws coated with calcium ions and their performance in rabbit bone. Int J Oral Maxillofac Implant 17:625–634

    Google Scholar 

  25. Teraoka F, Nakagawa M, Hara M (2006) Surface modification of poly(l-lactide) by atmospheric plasma treatment and cell response. Dent Mater J 25:560–565

    Article  PubMed  CAS  Google Scholar 

  26. Ulrich KH (1993) A micromethod of delipidation of aqueous proteins. Anal Biochem 210:318–327

    Article  Google Scholar 

  27. Yamamoto H, Shibata Y, Miyazaki T (2005) Anode glow discharge plasma treatment of titanium plates facilitates adsorption of extracellular matrix proteins to the plates. J Dent Res 84:668–671

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Jen Chang.

Additional information

Haw-Ming Huang and Sung-Chih Hsieh contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, HM., Hsieh, SC., Teng, NC. et al. Biological surface modification of titanium surfaces using glow discharge plasma. Med Biol Eng Comput 49, 701–706 (2011). https://doi.org/10.1007/s11517-011-0742-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-011-0742-2

Keywords

Navigation