Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Modification of titanium alloys surface properties by plasma electrolytic oxidation (PEO) and influence on biological response

  • Biocompatibility Studies
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Surface characteristics can mediate biological interaction improving or affecting the tissue integration after implantation of a biomaterial. Features such as topography, wettability, surface energy and chemistry can be key determinants for interactions between cells and materials. Plasma electrolytic oxidation (PEO) is a technique used to control this kind of parameters by the addition of chemical species and the production of different morphologies on the surfaces of titanium and its alloys. With the purpose to improve the biological response, surfaces of c.p titanium and Ti6Al4V were modified by using PEO. Different electrolytes, voltages, current densities and anodizing times were tested in order to obtain surfaces with different characteristics. The obtained materials were characterized by different techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM) and glow discharge optical emission spectroscopy (GDOES). Wettability of the obtained surfaces were measured and the corresponding surface energies were calculated. Superhydrophilic surfaces with contact angles of about 0 degrees were obtained without any other treatment but PEO and this condition in some cases remains stable after several weeks of anodizing; crystal phase composition (anatase—rutile) of the anodic surface appears to be critical for obtaining this property. Finally, in order to verify the biological effect of these surfaces, osteoblast were seeded on the samples. It was found that cell behavior improves as SFE (surface free energy) and coating porosity increases whereas it is affected negatively by roughness.

Graphical abstract

Techniques for surface modification allow changes in the coatings such as surface energy, roughness and porosity. As a consequence of this, biological response can be altered. In this paper, surfaces of c.p Ti and Ti6Al4V were modified by using plasma electrolytic oxidation (PEO) in order to accelerate the cell adhesion process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Long M, Rack HJ. Titanium alloys in total joint replacement — a materials science perspective. Biomaterials. 1998;19:1621–39.

    Article  Google Scholar 

  2. Elias CN, Lima JHC, Valiev R, Meyers MA, Biomedical applications of titanium and its alloys. Jom. 2008;60:46–9.

    Article  Google Scholar 

  3. Allain JP, Echeverry-rendón M, Pavón JJ, Arias SL Nanostructured biointerfaces. Nanopatterning Nanoscale Devices. Biol Appl. 2015;42–67.

  4. Echeverry-rendón M, Giraldo DQ, López-lacomba JL. Osseointegration improvement by plasma electrolytic oxidation of modified titanium alloys surfaces. J Mater Sci Mater Med. 2015;26:1–18.

  5. Liu X, Chu PK, Ding C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater Sci Eng R Rep. 2004;47:49–121.

    Article  Google Scholar 

  6. Yang D, Lü X, Hong Y, Xi T, Zhang D. The molecular mechanism of mediation of adsorbed serum proteins to endothelial cells adhesion and growth on biomaterials. Biomaterials. 2013;34:5747–58.

    Article  Google Scholar 

  7. Khatayevich D, Gungormus M, Yazici H, So C, Cetinel S, Ma H, et al. Biofunctionalization of materials for implants using engineered peptides. Acta Biomater. 2010;6:4634–41.

    Article  Google Scholar 

  8. Elmengaard B, Bechtold JE, Søballe K. In vivo study of the effect of RGD treatment on bone ongrowth on press-fit titanium alloy implants. Biomaterials. 2005;26:3521–6.

    Article  Google Scholar 

  9. Nayak S, Dey T, Naskar D, Kundu SC. The promotion of osseointegration of titanium surfaces by coating with silk protein sericin. Biomaterials. 2013;34:2855–64.

    Article  Google Scholar 

  10. Groeneveld EH, Burger EH. Bone morphogenetic proteins in human bone regeneration. Eur J Endocrinol EFES. 2000;142:9–21.

    Article  Google Scholar 

  11. Cheng H, Jiang W, Phillips FM, Haydon RC, Peng Y, Zhou L, et al. Osteogenic activity of the fourteen types of human bone morphogenetic proteins (BMPs). J Bone Jt Surg Am. 2003;85:1544–52.

    Article  Google Scholar 

  12. Hu Y, Cai K, Luo Z, Zhang Y, Li L, Lai M, et al. Regulation of the differentiation of mesenchymal stem cells in vitro and osteogenesis in vivo by microenvironmental modification of titanium alloy surfaces. Biomaterials. 2012;33:3515–28.

    Article  Google Scholar 

  13. Lee DW, Yun YP, Park K, Kim SE, Gentamicin and bone morphogenic protein-2 (BMP-2)-delivering heparinized-titanium implant with enhanced antibacterial activity and osteointegration. Bone. 2012;50:974–82.

    Article  Google Scholar 

  14. Jahed Z, Shams H, Mehrbod M, Mofrad MR. Mechanotransduction pathways linking the extracellular matrix to the nucleus. Int Rev Cell Mol Biol. 2014;310:e220.

    Google Scholar 

  15. Huang C, Ogawa R. Mechanotransduction in bone repair and regeneration. FASEB J. FASEB. 2010;24:3625–32.

    Article  Google Scholar 

  16. Duncan RL, Turner CH, Mechanotransduction and the functional response of bone to mechanical strain. Calcif Tissue Int. 1995;57:344–58.

    Article  Google Scholar 

  17. Quintero D, Galvis O, Calderón Ja, Castaño JG, Echeverría F. Effect of electrochemical parameters on the formation of anodic films on commercially pure titanium by plasma electrolytic oxidation. Surf Coatings Technol. 2014;258:1223–31.

    Article  Google Scholar 

  18. Sankara Narayanan TSN, Park IS, Lee MH, Strategies to improve the corrosion resistance of microarc oxidation (MAO) coated magnesium alloys for degradable implants: prospects and challenges. Prog Mater Sci. 2014;60:1–71.

    Article  Google Scholar 

  19. Wheeler JM, Collier CA, Paillard JM, Curran JA, Evaluation of micromechanical behaviour of plasma electrolytic oxidation (PEO) coatings on Ti--6Al--4V. Surf. Coatings Technol. 2010;204:3399–409.

    Article  Google Scholar 

  20. Choi J, Wehrspohn RB, Lee J, Gösele U. Anodization of nanoimprinted titanium: a comparison with formation of porous alumina. Electrochim. Acta. 2004;49:2645–52. http://linkinghub.elsevier.com/retrieve/pii/S001346860400177X. Accessed 12 Sep 2014.

  21. Ponsonnet L, Comte V, Othmane A, Lagneau C, Charbonnier M, Lissac M, et al. Effect of surface topography and chemistry on adhesion, orientation and growth of fibroblasts on nickel–titanium substrates. Mater Sci Eng C. 2002;21:157–65.

    Article  Google Scholar 

  22. Ponsonnet L, Reybier K, Jaffrezic N, Comte V, Lagneau C, Lissac M, et al. Relationship between surface properties (roughness, wettability) of titanium and titanium alloys and cell behaviour. Mater Sci Eng C. 2003;23:551–60. http://linkinghub.elsevier.com/retrieve/pii/S092849310300033X. Accessed 4 Dec 2014.

  23. Anselme K, Linez P, Bigerelle M, Le Maguer D, Le Maguer A, Hardouin P, et al. The relative influence of the topography and chemistry of TiAl6V4 surfaces on osteoblastic cell behaviour. Biomaterials. 2000;21:1567–77.

    Article  Google Scholar 

  24. Rupp F, Scheideler L, Rehbein D, Axmann D, Geis-Gerstorfer J. Roughness induced dynamic changes of wettability of acid etched titanium implant modifications. Biomaterials. 2004;25:1429–38.

    Article  Google Scholar 

  25. Raimbault O, Benayoun S, Anselme K, Mauclair C, Bourgade T, Kietzig A-M, et al. The effects of femtosecond laser-textured Ti-6Al-4V on wettability and cell response. Mater Sci Eng C. 2016;69:311–20.

    Article  Google Scholar 

  26. Flemming RG, Murphy CJ, Abrams GA, Goodman SL, Nealey PF. Effects of synthetic micro- and nano-structured surfaces on cell behavior. Biomaterials. 1999;20:573–88. http://linkinghub.elsevier.com/retrieve/pii/S0142961298002099. Accessed 27 Jan 2017.

  27. ASTM International WC. ASTM Standard F67- 13, Standard Specification for Unalloyed Titanium, for Surgical Implant Application. PA, 2013.

  28. ASTM International WC. ASTM Standard F136 - 12, Standard Specification for Wrought Titanium-6Aluminum-4Vanadium ELI (Extra Low Interstitial) Alloy for Surgical Implant Applications. PA, 2012.

  29. ASTM International WC. ASTM Standard B600- 11, Standard Guide for Descaling and Cleaning Titanium and Titanium Alloy Surfaces. PA, 2011.

  30. Galvis OA, Quintero D, Castaño JG, Liu H, Thompson GE, Skeldon P, et al. Formation of grooved and porous coatings on titanium by plasma electrolytic oxidation in H 2 SO 4/H 3 PO 4 electrolytes and effects of coating morphology on adhesive bonding. Surf Coatings Technol. 2015;269:238–49.

    Article  Google Scholar 

  31. Ferdjani S, David D, Beranger G. Anodic oxidation of titanium in phosphoric acid baths: phosphorus incorporation into the oxide. J Alloys Compd. 1993;200:191–4.

    Article  Google Scholar 

  32. Curran JA, Clyne TW. Porosity in plasma electrolytic oxide coatings. Acta Mater. 2006;54:1985–93.

    Article  Google Scholar 

  33. Chang L, Tian L, Liu W, Duan X. Formation of dicalcium phosphate dihydrate on magnesium alloy by micro-arc oxidation coupled with hydrothermal treatment. Corros Sci. 2013;72:118–24.

    Article  Google Scholar 

  34. Cheng Y, Xue Z, Wang Q, Wu X-Q, Matykina E, Skeldon P, et al. New findings on properties of plasma electrolytic oxidation coatings from study of an Al--Cu--Li alloy. Electrochim Acta. 2013;107:358–78.

    Article  Google Scholar 

  35. Becker I, Hofmann I, Müller FA. Preparation of bioactive sodium titanate ceramics. J Eur Ceram Soc. 2007;27:4547–53.

    Article  Google Scholar 

  36. Diebold U. The surface science of titanium dioxide. Surf Sci Rep. 2003;48:53–229.

    Article  Google Scholar 

  37. Krishna LR, Purnima AS, Sundararajan G. A comparative study of tribological behavior of microarc oxidation and hard-anodized coatings. Wear. 2006;261:1095–101.

    Article  Google Scholar 

  38. Martin J, Melhem A, Shchedrina I, Duchanoy T, Nominé A, Henrion G, et al. Effects of electrical parameters on plasma electrolytic oxidation of aluminium. Surf Coatings Technol. 2013;221:70–6.

    Article  Google Scholar 

  39. Wang Y, Lei T, Jiang B, Guo L. Growth, microstructure and mechanical properties of microarc oxidation coatings on titanium alloy in phosphate-containing solution. Appl Surf Sci. 2004;233:258–67.

    Article  Google Scholar 

  40. Onoda K, Yoshikawa S. Effect of pre-nitridation treatment on the formation of anatase TiO 2 films by anodization. Ceram Int. 2008;34:1453–7.

    Article  Google Scholar 

  41. Snizhko LO, Yerokhin AL, Pilkington A, Gurevina NL, Misnyankin DO, Leyland A, et al. Anodic processes in plasma electrolytic oxidation of aluminium in alkaline solutions. Electrochim Acta. 2004;49:2085–95.

    Article  Google Scholar 

  42. Habazaki H, Shimizu K, Nagata S, Skeldon P, Thompson GE, Wood GC. Ionic transport in amorphous anodic titania stabilised by incorporation of silicon species. Corros Sci. 2002;44:1047–55.

    Article  Google Scholar 

  43. Habazaki H, Uozumi M, Konno H, Shimizu K, Skeldon P, Thompson GE. Crystallization of anodic titania on titanium and its alloys. Corros Sci. 2003;45:2063–73.

    Article  Google Scholar 

  44. Nakajima M, Miura Y, Fushimi K, Habazaki H. Spark anodizing behaviour of titanium and its alloys in alkaline aluminate electrolyte. Corros Sci. 2009;51:1534–9.

    Article  Google Scholar 

  45. Lee J-H, Kim S-E, Kim Y-J, Chi C-S, Oh H-J. Effects of microstructure of anodic titania on the formation of bioactive compounds. Mater Chem Phys. 2006;98:39–43.

    Article  Google Scholar 

  46. Marino CEB, Nascente PAP, Biaggio SR, Rocha-Filho RC, Bocchi N. XPS characterization of anodic titanium oxide films grown in phosphate buffer solutions. Thin Solid Films. 2004;468:109–12.

    Article  Google Scholar 

  47. Ohtsu N, Komiya S, Kodama K. Effect of electrolytes on anodic oxidation of titanium for fabricating titanium dioxide photocatalyst. Thin Solid Films. 2013;534:70–5.

    Article  Google Scholar 

  48. Ohtsu N, Ishikawa D, Komiya S, Sakamoto K. Effect of phosphorous incorporation on crystallinity, morphology, and photocatalytic activity of anodic oxide layer on titanium. Thin Solid Films. 2014;556:247–52.

    Article  Google Scholar 

  49. Spurr RA, Myers H. Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer. Anal Chem. American Chemical Society; 1957;29:760–2. http://pubs.acs.org/doi/abs/10.1021/ac60125a006. Accessed 27 Jan 2017.

  50. Diamanti MV, Pedeferri MP. Effect of anodic oxidation parameters on the titanium oxides formation. Corros Sci. 2007;49:939–48.

    Article  Google Scholar 

  51. Lin CS, Chen MT, Liu JH. Structural evolution and adhesion of titanium oxide film containing phosphorus and calcium on titanium by anodic oxidation. J Biomed Mater Res Part A. 2008;85:378–87.

    Article  Google Scholar 

  52. Yetim AF. Investigation of wear behavior of titanium oxide films, produced by anodic oxidation, on commercially pure titanium in vacuum conditions. Surf Coatings Technol. 2010;205:1757–63.

    Article  Google Scholar 

  53. Xie L, Yin G, Yan D, Liao X, Huang Z, Yao Y, et al. Structure, morphology and fibroblasts adhesion of surface-porous titanium via anodic oxidation. J Mater Sci Mater Med. 2010;21:259–66.

    Article  Google Scholar 

  54. Hanaor DAH, Sorrell CC. Review of the anatase to rutile phase transformation. J Mater Sci. 2011;46:855–74. http://link.springer.com/10.1007/s10853-010-5113-0. Accessed 27 Jan 2017.

  55. Matykina E, Garcia I, de Damborenea JJ, Arenas M a. Comparative determination of TiO2 surface free energies for adhesive bonding application. Int J Adhes Adhes. 2011;31:832–9. http://linkinghub.elsevier.com/retrieve/pii/S0143749611001126. Accessed 11 Jan 2017.

  56. Packham DE. Surface energy, surface topography and adhesion. Int J Adhes Adhes. 2003;23:437–48.

    Article  Google Scholar 

  57. Giljean S, Bigerelle M, Anselme K, Haidara H. New insights on contact angle/roughness dependence on high surface energy materials. Appl Surf Sci. 2011;257:9631–8. https://doi.org/10.1016/j.apsusc.2011.06.088.

    Article  Google Scholar 

  58. Aksoy G, Polat H, Polat M, Coskun G. Effect of various treatment and glazing (coating) techniques on the roughness and wettability of ceramic dental restorative surfaces. Coll Surf B Biointerfaces. 2006;53:254–9.

    Article  Google Scholar 

  59. Kubiak KJ, Wilson MCT, Mathia TG, Carval P. Wettability versus roughness of engineering surfaces. Wear. 2011;271:523–8.

    Article  Google Scholar 

  60. Elias CN, Oshida Y, Lima JHC, Muller CA Relationship between surface properties (roughness, wettability and morphology) of titanium and dental implant removal torque. J Mech Behav Biomed Mater. 2008;1:234–42. http://www.ncbi.nlm.nih.gov/pubmed/19627788. Accessed 22 Nov 2014.

  61. Patel SB, Hamlekhan A, Royhman D, Butt A, Yuan J, Shokuhfar T, et al. Enhancing surface characteristics of Ti–6Al–4V for bio-implants using integrated anodization and thermal oxidation. J Mater Chem B. 2014;2:3597. http://xlink.rsc.org/?DOI=c3tb21731k.

  62. Hanaor DaH, Sorrell CC. Review of the anatase to rutile phase transformation. J Mater Sci. 2011;46:855–74.

    Article  Google Scholar 

  63. Wang S, Liu Y, Zhang C, Liao Z, Liu W. The improvement of wettability, biotribological behavior and corrosion resistance of titanium alloy pretreated by thermal oxidation. Tribol Int. 2014;79:174–82. https://doi.org/10.1016/j.triboint.2014.06.008.

    Article  Google Scholar 

  64. Żenkiewicz M. Comparative study on the surface free energy of a solid calculated by different methods. Polym Test. 2007;26:14–9. http://linkinghub.elsevier.com/retrieve/pii/S0142941806001577. Accessed 24 Dec 2014.

  65. Lim YJ, Oshida Y, Andres CJ, Barco MT. Surface characterizations of variously treated titanium materials. Int J Oral Max Surg. [Internet]. 2001;16:333. http://www.ncbi.nlm.nih.gov/pubmed/11432653.

  66. Kulkarni M, Patil-Sen Y, Junkar I, Kulkarni CV, Lorenzetti M, Iglič A. Wettability studies of topologically distinct titanium surfaces. Coll Surf B Biointerfaces. 2015;129:47–53.

    Article  Google Scholar 

  67. Lee J, Kim C, Ph D, Lim Y, Kim M. Surface analyses of titanium substrate modified by anodization and nanoescale Ca-P deposition. J Korean Acad Prosthodont. 2007;45(6):795–804.

  68. Yavari SA, Necula BS, Fratila-Apachitei LE, Duszczyk J, Apachitei I. Biofunctional surfaces by plasma electrolytic oxidation on titanium biomedical alloys Surface Engineering. Surf Eng. 2016;32:417.

    Article  Google Scholar 

  69. Gittens RA, Olivares-Navarrete R, Cheng A, Anderson DM, McLachlan T, Stephan I, et al. The roles of titanium surface micro/nanotopography and wettability on the differential response of human osteoblast lineage cells. Acta Biomater. 2013;9:6268–77.

    Article  Google Scholar 

  70. Flemming RG, Murphy CJ, Abrams GA, Goodman SL, Nealey PF. Effects of synthetic micro-and nano-structured surfaces on cell behavior. Biomaterials. 1999;20:573–88.

    Article  Google Scholar 

  71. Anselme K. Osteoblast adhesion on biomaterials. Biomaterials. 2000;21:667–81. http://linkinghub.elsevier.com/retrieve/pii/S0142961299002422.

  72. Mavrogenis AF, Dimitriou R, Parvizi J, Babis GC. Biology of implant osseointegration. J Musculoskelet Neuronal Interact. 2009;9:61–71.

    Google Scholar 

  73. Le Guéhennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater. 2007;23:844–54.

    Article  Google Scholar 

  74. Jin M, Yao S, Wang L-N, Qiao Y, Volinsky AA. Enhanced bond strength and bioactivity of interconnected 3D TiO2 nanoporous layer on titanium implants. Surf. Coatings Technol. 2016;304:459–67.

    Article  Google Scholar 

  75. Sul Y-T, Johansson C, Albrektsson T. Which surface properties enhance bone response to implants? Comparison of oxidized magnesium, TiUnite, and Osseotite implant surfaces. Int J Prosthodont. 2006;19(4):319–28.

  76. Sul Y-T, Johansson C, Wennerberg A, Cho L-R, Chang B-S, Albrektsson T. Optimum surface properties of oxidized implants for reinforcement of osseointeg ration: Surface chemistry, oxide thickness, porosity, roughness, and crystal structure. Int J Oral Maxillofac Implants. 2005;20(3):349–59.

  77. Ince A, Schütze N, Hendrich C, Thull R, Eulert J, Löhr JF. In vitro investigation of orthopedic titanium-coated and brushite-coated surfaces using human osteoblasts in the presence of gentamycin. J Arthroplasty. 2008;23:762–71.

    Article  Google Scholar 

  78. Jia Z, Xiu P, Xiong P, Zhou W, Cheng Y, Wei S, et al. Additively manufactured macroporous titanium with silver-releasing micro-/nanoporous surface for multipurpose infection control and bone repair - A proof of concept. ACS Appl Mater Interfaces. 2016;8:28495–510.

    Article  Google Scholar 

  79. Chen C, Zhang S-M, Lee I-S. Immobilizing bioactive molecules onto titanium implants to improve osseointegration. Surf. Coatings Technol. 2013;228:S312–7.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are pleased to acknowledge the financial assistance of the “Departamento Administrativo de Ciencia, Tecnología e Innovación—COLCIENCIAS” through the project 111556933337 and “Estrategia de Sostenibilidad de la Universidad de Antioquia”. M.E.R and R.A. are supported by COLCIENCIAS PhD grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mónica Echeverry-Rendón.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Echeverry-Rendón, M., Galvis, O., Aguirre, R. et al. Modification of titanium alloys surface properties by plasma electrolytic oxidation (PEO) and influence on biological response. J Mater Sci: Mater Med 28, 169 (2017). https://doi.org/10.1007/s10856-017-5972-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-017-5972-x

Navigation