Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Efficient InSAR phase noise reduction via total variation regularization

一种基于全差分正则化的高效 InSAR 降噪方法

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

We consider the phase noise filtering problem for Interferometric Synthetic Aperture Radar (InSAR) using a total variation regularized complex linear least squares formulation. Although the original formulation is convex, solving it directly with the standard CVX package is time consuming due to the large problem size. In this paper, we introduce the effective and efficient alternating direction method of multipliers (ADMM) to solve the equivalent well-defined complex formulation for the real and imaginary parts of the optimization variables. Both the iteration complexity and the computational complexity of the ADMM are established in the forms of theorems for our InSAR phase noise problem. Simulation results based on simulated and measured data show that this new InSAR phase noise reduction method not only is 3 orders of magnitude faster than the standard CVX solver, but also has a much better performance than the several existing phase filtering methods.

创新点

  1. 1.

    提出一种基于复的线性二乘最小化项加上一个全差分正则项的凸贝叶斯解决方案。

  2. 2.

    由于凸优化问题规模大, 仅仅采用标准的CVX软件包求解该模型非常耗时。为了有效 且高效地进行求解, 文本给出等效的相位滤波模型并引入ADMM算法求解该等效模型。

  3. 3.

    为了分析用于求解该模型的ADMM算法的性能, 本文建立了其迭代复杂性和计算复杂 性。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eichel P H, Ghiglia D C, Jakowatz C V, et al. Spotlight SAR interferometry for terrain elevation mapping and interferometric change detection. Sandia National Laboratories SAND-93-2072. 1996

    Book  Google Scholar 

  2. Chen R P, Yu W D, Wang R, et al. Interferometric phase denoising by pyramid nonlocal means filter. IEEE Geosci Remote Sens Lett, 2013, 10: 826–830

    Article  Google Scholar 

  3. Lee J S. A new technique for noise filtering of SAR interferogram phase images. IEEE Trans Geosci Remot Sen, 1998, 36: 1456–1465

    Article  Google Scholar 

  4. Fu S H, Long X J, Yang X, et al. Directionally adaptive filter for synthetic aperture radar interferometric phase image. IEEE Trans Geosci Remot Sen, 2013, 51: 552–559

    Article  Google Scholar 

  5. Goldenstein R M, Radar C L. Radar interferogram filtering for geophysical applications. Geophys Reserv Lett, 1998, 25: 4035–4038

    Article  Google Scholar 

  6. Baran L, Stewart M P, Kampes B M, et al. A modification to the goldstein radar interferogram filter. IEEE Trans Geosci Remot Sen, 2003, 41: 2114–2118

    Article  Google Scholar 

  7. Deledalle C, Denis L, Tupin F. NL-InSAR: nonlocal interferogram estimation. IEEE Trans Geosci Remot Sen, 2011, 49: 1441–1452

    Article  Google Scholar 

  8. Li J W, Li Z F, Bao Z, et al. Noise filtering of high-resolution interferograms over vegetation and urban areas with a refined nonlocal filter. IEEE Geosci Remote Sens Lett, 2015, 12: 77–81

    Article  Google Scholar 

  9. Andriyan S B, Akira H. Interferometric SAR image restoration using Monte Carlo metropolis method. Sci China Inf Sci, 2010, 52: 1399–1408

    Google Scholar 

  10. Suo Z Y, Li Z F, Bao Z, et al. SAR-GMTI investigation in hybrid along and cross-track baseline InSAR. Sci China Ser-F: Inf Sci, 2009, 52: 1399–1408

    Article  MATH  Google Scholar 

  11. Steven M K. Fundamentals of Statistical Signal Processing. Volume I: Estinimation Theory. Prentice-Hall, 1998

    Google Scholar 

  12. Yang J F, Zhang Y, Yin W T. A fast alternating direction method for TVL1-L2 signal reconstruction from partial Fourier data. IEEE J Sel Top Signal Process, 2010, 4: 288–297

    Article  Google Scholar 

  13. Li M. A fast algorithm for color image enhancement with total variation regularization. Sci China Inf Sci, 2010, 53: 1913–1916

    Article  MathSciNet  Google Scholar 

  14. Grant M, Boyd S. CVX: Matlab Software for Disciplined Convex Programming. Version 1.21. 2010

    Google Scholar 

  15. López-Martínez C, Fábregas X. Modeling and reduction of SAR interferometric phase noise in the wavelet domain. IEEE Trans Geosci Remot Sen, 2002, 40: 2553–2566

    Article  Google Scholar 

  16. Zeng C, Wang M H, Liao G S, et al. Sparse synthetic aperture radar imaging with optimized azimuthal aperture. Sci China Inf Sci, 2012, 55: 1852–1859

    Article  MathSciNet  MATH  Google Scholar 

  17. Xu G, Sheng J L, Zhang L, et al. Performance improvement in multi-ship imaging for ScanSAR based on sparse representation. Sci China Inf Sci, 2012, 55: 1860–1875

    Article  MathSciNet  Google Scholar 

  18. Yang J F, Zhang Y. Alternating direction algorithms for l 1-problems in compressive sensing. SIAM J Sci Comput, 2011, 33: 250–278

    Article  MathSciNet  MATH  Google Scholar 

  19. Gabay D, Mercier B. A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Comput Math Appl, 1976, 2: 17–40

    Article  MATH  Google Scholar 

  20. Glowinski R, Marrocco A. On the approximation and resolution of one class of problems of Dirichlet nonlinearity by finite elements and penalization-duality. Revue Fr Autom Inf Rech Oper, 1975, R-2: 41–76

    MathSciNet  Google Scholar 

  21. Zhao G H, Shen F F, Wang Z Y, et al. A high quality image reconstruction method based on nonconvex decoding. Sci China Inf Sci, 2013, 56: 112103

    Google Scholar 

  22. Bertsekas D. Constrained Optimization and Lagrange Multiplier Method. New York: Acadedemic, 1982

    Google Scholar 

  23. Yuan X M. Alternating direction method for covariance selection models. J Sci Comput, 2012, 51: 261–273

    Article  MathSciNet  MATH  Google Scholar 

  24. Cai X J, Gu G Y, He B S, et al. A proximal point algorithm revisit on the alternating direction method of multipliers. Sci China Math, 2013, 56: 2179–2186

    Article  MathSciNet  MATH  Google Scholar 

  25. Boyd S, Parikh N, Chu E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers. Found Trends Mach Learn, 2011, 3: 1–122

    Article  Google Scholar 

  26. He B S, Yuan X M. On the O(1/n) convergence rate of the douglas-rachford alternating direction method. SIAM J Numer Anal, 2012, 50: 700–709

    Article  MathSciNet  MATH  Google Scholar 

  27. Cai B, Liang D, Dong Z. A new adaptive multiresolution noise-filtering approach for SAR interferometric phase images. IEEE Geosci Remote Sens Lett, 2008, 5: 266–270

    Article  Google Scholar 

  28. Ghiglia D C, Pritt M D. Two-Dimensional Phase Unwrapping Theory, Algorithms, and Software. Wiley-Interscience, 1998

    MATH  Google Scholar 

  29. Loffeld O, Nies H, Knedlik S, et al. Phase unwrapping for SAR interferometry—a data fusion approach by Kalman filtering. IEEE Trans Geosci Remot Sen, 2008, 46: 47–58

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiaoMei Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, X., Wang, X., Suo, Z. et al. Efficient InSAR phase noise reduction via total variation regularization. Sci. China Inf. Sci. 58, 1–13 (2015). https://doi.org/10.1007/s11432-014-5244-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-014-5244-z

Keywords

关键词

Navigation