Abstract
The covariance selection problem captures many applications in various fields, and it has been well studied in the literature. Recently, an l 1-norm penalized log-likelihood model has been developed for the covariance selection problem, and this novel model is capable of completing the model selection and parameter estimation simultaneously. With the rapidly increasing magnitude of data, it is urged to consider efficient numerical algorithms for large-scale cases of the l 1-norm penalized log-likelihood model. For this purpose, this paper develops the alternating direction method (ADM). Some preliminary numerical results show that the ADM approach is very efficient for large-scale cases of the l 1-norm penalized log-likelihood model.
Similar content being viewed by others
References
Banerjee, O., El Ghaoui, L., d’Aspremont, A.: Model selection through sparse maximum likelihood estimation. J. Mach. Learn. Res. 9, 485–516 (2008)
Bauschke, H.H., Combettes, P.L.: A weak-to-strong convergence principle for Fejér-monotone methods in Hilbert spaces. Math. Oper. Res. 26(2), 248–264 (2001)
Bruckstein, A.M., Donoho, D.L., Elad, M.: From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Rev. 51(1), 34–81 (2009)
Cox, D.R., Wermuth, N.: Multivariate Dependencies: Models, Analysis and Interpretation. Chapman and Hall, London (1996)
d’Aspremont, A., Banerjee, O., El Ghaoui, L.: First-order methods for sparse covariance selection. SIAM J. Matrix Anal. Appl. 30(1), 56–66 (2008)
Dempster, A.: Covariance selection. Biometrics 28, 157–175 (1972)
Eckstein, J., Fukushima, M.: Some reformulation and applications of the alternating directions method of multipliers. In: Hager, W.W., et al. (eds.) Large Scale Optimization: State of the Art, pp. 115–134. Kluwer Academic, Norwell (1994)
Fazel, M., Hindi, H., Boyd, S.: A rank minimization heuristic with application to minimum order system approximation. Proc. Am. Control Conf. 6, 4734–4739 (2001)
Fukushima, M.: Application of the alternating direction method of multipliers to separable convex programming problems. Comput. Optim. Appl. 1, 93–111 (1992)
Gabay, D.: Application of the method of multipliers to variational inequalities. In: Fortin, M., Glowinski, R. (eds.) Augmented Lagrangian methods: Application to the Numerical Solution of Boundary-Value Problem, pp. 299–331. North-Holland, Amsterdam (1983)
Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite element approximations. Comput. Math. Appl. 2, 17–40 (1976)
Glowinski, R., Le Tallec, P.: Augmented Lagrangian and Operator Splitting Methods in Nonlinear Mechanics. SIAM Studies in Applied Mathematics, (1989)
Golub, G.H., van Loan, C.F.: Matrix Computation, 3rd edn. The Johns Hopkins University Press, Baltimore (1996)
He, B.S., Liao, L.Z., Han, D., Yang, H.: A new inexact alternating directions method for monotone variational inequalities. Math. Program. 92, 103–118 (2002)
He, B.S., Yang, H.: Some convergence properties of a method of multipliers for linearly constrained monotone variational inequalities. Oper. Res. Lett. 23, 151–161 (1998)
Hey, T., Tansley, S., Tolle, K.: The Fourth Paradigm: Data-Intensive Scientific Discovery. Microsoft Research (2009)
Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4, 303–320 (1969)
Hughes, T.R., Marton, M.J., Jones, A.R., Roberts, C.J., Stoughton, R., Armour, C.D., Bennett, H.A., Coffey, E., Dai, H., He, Y.D., Kidd, M.J., King, A.M., Meyer, M.R., Slade, D., Lum, P.Y., Stepaniants, S.B., Shoemaker, D.D., Gachotte, D., Chakraburtty, K., Simon, J., Bard, M., Friend, S.H.: Functional discovery via a compendium of expression profiles. Cell 102(1), 109–126 (2000)
Kontogiorgis, S., Meyer, R.R.: A variable-penalty alternating directions method for convex optimization. Math. Program. 83, 29–53 (1998)
Li, L., Toh, K.C.: An inexact interior point method for l 1-regularized sparse covariance selection. Math. Program. Comput. 2, 291–315 (2010)
Lu, Z.: Smooth optimization approach for sparse covariance selection. SIAM J. Control Optim. 19(4), 1807–1827 (2009)
Natsoulis, G., Pearson, C.I., Gollub, J., Eynon, B.P., Ferng, J., Nair, R., Idury, R., Lee, M.D., Fielden, M.R., Brennan, R.J., Roter, A.H., Jarnagin, K.: The liver pharmacological and xenobiotic gene response repertoire. Mol. Syst. Biol. 175(4), 1–12 (2008)
Ng, M., Weiss, P.A., Yuan, X.M.: Solving constrained total-variation problems via alternating direction methods. SIAM J. Sci. Comput. 32(5), 2710–2736 (2010)
Nesterov, Y.E.: A method for unconstrained convex minimization problem with the rate of convergence O(1/k 2). Dokl. Akad. Nauk SSSR 269, 543–547 (1983)
Nesterov, Y.E.: Smooth minimization of nonsmooth functions. Math. Program. 103, 127–152 (2005)
Nesterov, Y.E., Nemirovski, A.S.: Interior point Polynomial algorithms in Convex Programming: Theory and Applications. Society for Industrial and Applied Mathematics, Philadelphia (1994)
Powell, M.J.D.: A method for nonlinear constraints in minimization problems. In: Fletcher, R. (ed.) Optimization, pp. 283–298. Academic Press, New York (1969)
Sturm, J.F.: Using SeDuMi 1.02, a Matlab toolbox for optimization over symmetric cones. Optim. Methods Softw. 11–12, 625–653 (1999)
Tseng, P.: Alternating projection-proximal methods for convex programming and variational inequalities. SIAM J. Control Optim. 7, 951–965 (1997)
Tütüncü, R.H., Toh, K.C., Todd, M.J.: Solving semidefinite-quadratic-linear programs using SDPT3. Math. Program. 95, 189–217 (2003)
Vandenberghe, L., Boyd, S., Wu, S.-P.: Determinant maximization with linear matrix inequality constraints. SIAM J. Matrix Anal. Appl. 19, 499–533 (1998)
Wang, C.J., Sun, D.F., Toh, K.C.: Solving log-determinant optimization problems by a Newton-CG primal proximal point algorithm. SIAM J. Control Optim. 20, 2994–3013 (2010)
Yang, J.-F., Zhang, Y.: Alternating direction method for L1 problems in compressive sensing. SIAM J. Sci. Comput., 33(1), 250–278 (2011)
Ye, C.H., Yuan, X.M.: A descent method for structured monotone variational inequalities. Optim. Methods Softw. 22, 329–338 (2007)
Yuan, M., Lin, Y.: Model selection and estimation in the Gaussian graphical model. Biometrika 94(1), 19–35 (2007)
Yuan, Y.-X., Sun, W.Y.: Optimization Theory and Methods. Springer, Berlin (2006)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Yuan, X. Alternating Direction Method for Covariance Selection Models. J Sci Comput 51, 261–273 (2012). https://doi.org/10.1007/s10915-011-9507-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-011-9507-1