Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Experimental Procedure for Energy Dissipation Estimation during High-Cycle Fatigue Loading of Metallic Material

  • Research paper
  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

The fatigue failure process of metal is a complex energy exchange process accompanied by temperature evolution due to energy dissipation and heat transfer, which can be well recorded by infrared thermography. With the development and popularization of infrared thermography, many energy dissipation estimation methods have been proposed. In this work, three types of energy dissipation estimation methods in different time periods during the high-cycle fatigue experiment are derived and improved. The energy dissipations of FV520B stainless steel specimens (which are subjected to different heat treatments) during fatigue cyclic loading are estimated with the different derived methods and compared. The assumptions for thermal loss may be the main reason for error in the different methods. The energy dissipations estimated by the different methods have basically the same overall trend. Finally, some suggestions on high-cycle fatigue experimental procedures for energy dissipation estimation are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Fan J, Zhao Y, Guo X (2018) A unifying energy approach for high cycle fatigue behavior evaluation. Mech Mater 120:15–25. https://doi.org/10.1016/j.mechmat.2018.02.001

    Article  Google Scholar 

  2. Luong MP (1995) Infrared thermographic scanning of fatigue in metals. Nucl Eng Des 158(2-3):363–376. https://doi.org/10.1016/0029-5493(95)01043-H

    Article  Google Scholar 

  3. Minh PL (1998) Fatigue limit evaluation of metal using an infrared thermographic technique. Mech Mater 28(1-4):155–163. https://doi.org/10.1016/S0167-6636(97)00047-1

    Article  Google Scholar 

  4. La Rosa G, Risitano A (2000) Thermographic methodology for rapid determination of the fatigue limit of materials and mechanical components. Int J Fatigue 22(1):65–73. https://doi.org/10.1016/S0142-1123(99)00088-2

    Article  Google Scholar 

  5. Fargione G, Geraci A, La Rosa G, Risitano A (2002) Rapid determination of the fatigue curve by the thermographic method. Int J Fatigue 24(1):11–19. https://doi.org/10.1016/S0142-1123(01)00107-4

    Article  Google Scholar 

  6. Louche H, Chrysochoos A (2001) Thermal and dissipative effects accompanying Lüders band propagation. Mater Sci Eng A 307(1):15–22. https://doi.org/10.1016/S0921-5093(00)01975-4

    Article  Google Scholar 

  7. Chrysochoos A, Louche H (2000) An infrared image processing to analyse the calorific effects accompanying strain localisation. Int J Eng Sci 38(16):1759–1788. https://doi.org/10.1016/S0020-7225(00)00002-1

    Article  Google Scholar 

  8. Boulanger T, Chrysochoos A, Mabru C, Galtier A (2004) Calorimetric analysis of dissipative and thermoelastic effects associated with the fatigue behavior of steels. Int J Fatigue 26(3):221–229. https://doi.org/10.1016/S0142-1123(03)00171-3

    Article  Google Scholar 

  9. Crupi V (2008) An unifying approach to assess the structural strength. Int J Fatigue 30(7):1150–1159. https://doi.org/10.1016/j.ijfatigue.2007.09.007

    Article  Google Scholar 

  10. Cura F, Curti G, Sesana R (2005) A new iteration method for the thermographic determination of fatigue limit in steels. Int J Fatigue 27(4):453–459. https://doi.org/10.1016/j.ijfatigue.2003.12.009

    Article  Google Scholar 

  11. Delpueyo D, Balandraud X, Grediac M (2013) Heat source reconstruction from noisy temperature fields using an optimised derivative Gaussian filter. Infrared Phys Technol 60:312–322. https://doi.org/10.1016/j.infrared.2013.06.004

    Article  Google Scholar 

  12. Bubulinca C, Balandraud X, Grediac M, Stanciu S, Abrudeanu M (2014) Characterization of the mechanical dissipation in shape-memory alloys during stress-induced phase transformation. J Mater Sci 49(2):701–709. https://doi.org/10.1007/s10853-013-7751-5

    Article  Google Scholar 

  13. Maquin F, Pierron F (2007) Refined experimental methodology for assessing the heat dissipated in cyclically loaded materials at low stress levels. C R Mec 335(3):168–174. https://doi.org/10.1016/j.crme.2007.02.004

    Article  MATH  Google Scholar 

  14. Maquin F, Pierron F (2009) Heat dissipation measurements in low stress cyclic loading of metallic materials: from internal friction to micro-plasticity. Mech Mater 41(8):928–942. https://doi.org/10.1016/j.mechmat.2009.03.003

    Article  Google Scholar 

  15. Connesson N, Maquin F, Pierron F (2011) Experimental energy balance during the first cycles of cyclically loaded specimens under the conventional yield stress. Exp Mech 51(1):23–44. https://doi.org/10.1007/s11340-010-9336-4

    Article  Google Scholar 

  16. Connesson N, Maquin F, Pierron F (2011) Dissipated energy measurements as a marker of microstructural evolution: 316L and DP600. Acta Mater 59(10):4100–4115. https://doi.org/10.1016/j.actamat.2011.03.034

    Article  Google Scholar 

  17. Morabito A, Chrysochoos A, Dattoma V, Galietti U (2007) Analysis of heat sources accompanying the fatigue of 2024 T3 aluminium alloys. Int J Fatigue 29(5):977–984. https://doi.org/10.1016/j.ijfatigue.2006.06.015

    Article  Google Scholar 

  18. Blanche A, Chrysochoos A, Ranc N, Favier V (2015) Dissipation assessments during dynamic very high cycle fatigue tests. Exp Mech 55(4):699–709. https://doi.org/10.1007/s11340-014-9857-3

    Article  Google Scholar 

  19. Liakat M, Khonsari MM (2016) Analysis and life prediction of a composite laminate under cyclic loading. Compos Part B-Eng 84:98–108. https://doi.org/10.1016/j.compositesb.2015.08.015

    Article  Google Scholar 

  20. Liakat M, Khonsari MM (2015) Entropic characterization of metal fatigue with stress concentration. Int J Fatigue 70:223–234. https://doi.org/10.1016/j.ijfatigue.2014.09.014

    Article  Google Scholar 

  21. Liakat M, Khonsari MM (2015) On the anelasticity and fatigue fracture entropy in high-cycle metal fatigue. Mater Design 82:18–27. https://doi.org/10.1016/j.matdes.2015.04.034

    Article  Google Scholar 

  22. Liakat M, Khonsari MM (2014) Rapid estimation of fatigue entropy and toughness in metals. Mater Design 62:149–157. https://doi.org/10.1016/j.matdes.2014.04.086

    Article  Google Scholar 

  23. Williams P, Liakat M, Khonsari MM, Kabir OM (2013) A thermographic method for remaining fatigue life prediction of welded joints. Mater Design 51:916–923. https://doi.org/10.1016/j.matdes.2013.04.094

    Article  Google Scholar 

  24. Guo Q, Guo X, Fan J, Syed R, Wu C (2015) An energy method for rapid evaluation of high-cycle fatigue parameters based on intrinsic dissipation. Int J Fatigue 80:136–144. https://doi.org/10.1016/j.ijfatigue.2015.04.016

    Article  Google Scholar 

  25. Guo Q, Guo X (2016) Research on high-cycle fatigue behavior of FV520B stainless steel based on intrinsic dissipation. Mater Design 90:248–255. https://doi.org/10.1016/j.matdes.2015.10.103

    Article  Google Scholar 

  26. Meneghetti G (2007) Analysis of the fatigue strength of a stainless steel based on the energy dissipation. Int J Fatigue 29(1):81–94. https://doi.org/10.1016/j.ijfatigue.2006.02.043

    Article  Google Scholar 

  27. Meneghetti G, Ricotta M (2012) The use of the specific heat loss to analyse the low- and high-cycle fatigue behaviour of plain and notched specimens made of a stainless steel. Eng Fract Mech 81:2–16. https://doi.org/10.1016/j.engfracmech.2011.06.010

    Article  Google Scholar 

  28. Meneghetti G, Ricotta M, Atzori B (2013) A synthesis of the push-pull fatigue behaviour of plain and notched stainless steel specimens by using the specific heat loss. Fatigue Fract Eng Mater Struct 36(12):1306–1322. https://doi.org/10.1111/ffe.12071

    Article  Google Scholar 

  29. Meneghetti G, Ricotta M, Atzori B (2016) A two-parameter, heat energy-based approach to analyse the mean stress influence on axial fatigue behaviour of plain steel specimens. Int J Fatigue 82(1):60–70. https://doi.org/10.1016/j.ijfatigue.2015.07.028

    Article  Google Scholar 

  30. Seghir R, Bodelot L, Charkaluk E, Dufrenoy P (2012) Numerical and experimental estimation of thermomechanical fields heterogeneity at the grain scale of 316L stainless steel. Comp Mater Sci 53(1):464–473. https://doi.org/10.1016/j.commatsci.2011.08.036

    Article  Google Scholar 

  31. Seghir R, Charkaluk E, Dufrenoy P, Bodelot L (2010) Thermomechanical couplings in crystalline plasticity under fatigue loading. In Lukas P (ed) Procedia Engineering, vol 2, pp 1155–1164. https://doi.org/10.1016/j.proeng.2010.03.125

  32. Wang XG, Wang L, Huang MX (2016) In-situ evaluation of Luders band associated with martensitic transformation in a medium Mn transformation-induced plasticity steel. Mater Sci Eng A-Struct 674:59–63. https://doi.org/10.1016/j.msea.2016.07.054

    Article  Google Scholar 

  33. Wang XG, Wang L, Huang MX (2017) Kinematic and thermal characteristics of Luders and Portevin-Le Chatelier bands in a medium Mn transformation-induced plasticity steel. Acta Mater 124:17–29. https://doi.org/10.1016/j.actamat.2016.10.069

    Article  Google Scholar 

  34. Krapez JK, Pacou D, Gardette G (2000) Lock-in thermography and fatigue limit of metals. Quantitative infrared thermography, QIRT, 18-21 July 2000, Reims (France). https://doi.org/10.21611/qirt.2000.051

  35. Palumbo D, De Finis R, Ancona F, Galietti U (2017) Damage monitoring in fracture mechanics by evaluation of the heat dissipated in the cyclic plastic zone ahead of the crack tip with thermal measurements. Eng Fract Mech 181:65–76. https://doi.org/10.1016/j.engfracmech.2017.06.017

    Article  Google Scholar 

  36. De Finis R, Palumbo D, Galietti U (2019) A multianalysis thermography-based approach for fatigue and damage investigations of ASTM A182 F6NM steel at two stress ratios. Fatigue Fract Eng Mater Struct 42(1):267–283. https://doi.org/10.1111/ffe.12903

    Article  Google Scholar 

  37. Berthel B, Wattrisse B, Chrysochoos A, Galtier A (2007) Thermographic analysis of fatigue dissipation properties of steel sheets. Strain 43(3):273–279. https://doi.org/10.1111/j.1475-1305.2007.00349.x

    Article  Google Scholar 

  38. Berthel B, Chrysochoos A, Wattrisse B, Galtier A (2008) Infrared image processing for the calorimetric analysis of fatigue phenomena. Exp Mech 48(1):79–90. https://doi.org/10.1007/s11340-007-9092-2

    Article  Google Scholar 

  39. Wang C, Blanche A, Wagner D, Chrysochoos A, Bathias C (2014) Dissipative and microstructural effects associated with fatigue crack initiation on an Armco iron. Int J Fatigue 58:152–157. https://doi.org/10.1016/j.ijfatigue.2013.02.009

    Article  Google Scholar 

  40. Mareau C, Favier V, Weber B, Galtier A (2009) Influence of the free surface and the mean stress on the heat dissipation in steels under cyclic loading. Int J Fatigue 31(8-9):1407–1412. https://doi.org/10.1016/j.ijfatigue.2009.03.022

    Article  Google Scholar 

  41. Jongchansitto P, Douellou C, Preechawuttipong I, Balandraud X (2019) Comparison between 0D and 1D approaches for mechanical dissipation measurement during fatigue tests. Strain 55(3):e12307. https://doi.org/10.1111/str.12307

    Article  Google Scholar 

  42. Doudard C, Calloch S, Cugy P, Galtier A, Hild F (2005) A probabilistic two-scale model for high-cycle fatigue life predictions. Fatigue Fract Eng Mater Struct 28(3):279–288. https://doi.org/10.1111/j.1460-2695.2005.00854.x

    Article  Google Scholar 

  43. Yang W, Guo X, Guo Q, Fan J (2019) Rapid evaluation for high-cycle fatigue reliability of metallic materials through quantitative thermography methodology. Int J Fatigue 124:461–472. https://doi.org/10.1016/j.ijfatigue.2019.03.024

    Article  Google Scholar 

  44. Fan J, Guo X, Wu C, Crupi V, Guglielmino E (2015) Influence of heat treatments on mechanical behavior of FV520B steel. Exp Tech 39(2):55–64. https://doi.org/10.1111/ext.12019

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China [grant number 51601175].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X.L. Guo.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Fan, J., Guo, Q. et al. Experimental Procedure for Energy Dissipation Estimation during High-Cycle Fatigue Loading of Metallic Material. Exp Mech 60, 695–712 (2020). https://doi.org/10.1007/s11340-020-00589-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-020-00589-2

Keywords

Navigation