Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Path-based approximate matching of fuzzy spatiotemporal RDF data

  • Published:
World Wide Web Aims and scope Submit manuscript

Abstract

As fuzzy spatiotemporal information continuously increases in RDF database, it is challenging to model and query fuzzy spatiotemporal RDF data efficiently and effectively. However, various researches are studied in temporal RDF database, spatial RDF database, and spatiotemporal RDF database. Querying fuzzy spatiotemporal RDF data has received relatively little attention, especially approximate matching of fuzzy spatiotemporal RDF data. To accomplish this, we first study fuzzy spatiotemporal RDF data graph, spatiotemporal RDF query graph, and path of fuzzy spatiotemporal RDF data graph. Then, we propose a scoring function for approximate evaluation of fuzzy spatiotemporal RDF data graph and spatiotemporal RDF query graph. After dividing the fuzzy spatiotemporal RDF data graphs into five categories based on their structure, we propose the decomposition algorithm, matching algorithm, and combination algorithm for approximate matching of fuzzy spatiotemporal RDF data. Our approach adopts path-based matching so that it is easy to discover the relations between two vertices in fuzzy spatiotemporal RDF data graph. Finally, the experimental results demonstrate the performance advantages of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Algorithm 1
Algorithm 2
Figure 5
Algorithm 3
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Gutierrez, C., Hurtado, C.A., Vaisman, A.: Temporal RDF. In: Proceedings of the European Semantic Web Conference. Heraklion, Greece (2005). https://doi.org/10.1007/11431053_7

  2. Gutierrez, C., Hurtado, C.A., Vaisman, A.: Introducing time into RDF. IEEE Trans. Knowl. Data Eng. 19(2), 207–218 (2006). https://doi.org/10.1109/TKDE.2007.34

    Article  Google Scholar 

  3. Zhang, F., Wang, K., Li, Z., Cheng, J.: Temporal data representation and querying based on RDF. IEEE Access 7, 85000–85023 (2019). https://doi.org/10.1109/ACCESS.2019.2924550

    Article  Google Scholar 

  4. Pugliese, A., Udrea, O., Subrahmanian, V.S.: Scaling RDF with time. In: Proceedings of the 17th International Conference on World Wide Web. Beijing, China (2008). https://doi.org/10.1145/1367497.1367579

  5. Yan, L., Zhao, P., Ma, Z.: Indexing temporal RDF graph. Computing 101, 1457–1488 (2019). https://doi.org/10.1007/s00607-019-00703-w

    Article  Google Scholar 

  6. Liagouris, J., Mamoulis, N., Bouros, P., Terrovitis, M.: An effective encoding scheme for spatial RDF data. VLDB Endow. 7(12), 1271–1282 (2014). https://doi.org/10.14778/2732977.2733000

    Article  Google Scholar 

  7. Brodt, A., Nicklas, D., Mitschang, B.: Deep integration of spatial query processing into native RDF triple stores. In: Proceedings of the 18th SIGSPATIAL International Symposium on Advances in Geographic Information Systems. San Jose, United States (2010). https://doi.org/10.1145/1869790.1869799

  8. Wang, D., Zou, L., Feng, Y., Shen, X., Tian, J., Zhao, D.: S-store: an engine for large RDF graph integrating spatial information. In: Proceedings of the 18th International Conference on Database Systems for Advanced Applications. Wuhan, China (2013). https://doi.org/10.1007/978-3-642-37450-0_3

  9. Shi, J., Wu, D., Mamoulis, N.: Top-k relevant semantic place retrieval on spatial RDF data. In: Proceedings of the 2016 International Conference on Management of Data. San Francisco, United States (2016). https://doi.org/10.1145/2882903.2882941

  10. Cai, Z., Kalamatianos, G., Fakas, G.J., Mamoulis, N., Papadias, D.: Diversified spatial keyword search on RDF data. VLDB J. 29, 1171–1189 (2020). https://doi.org/10.1007/s00778-020-00610-z

    Article  Google Scholar 

  11. Wang, D., Zou, L., Zhao, D.: gst-store: querying large spatiotemporal RDF graphs. Data Inf. Manage. 1(2), 84–103 (2017). https://doi.org/10.1515/dim-2017-0008

    Article  Google Scholar 

  12. Vlachou, A., Doulkeridis, C., Glenis, A., Santipantakis, G.M., Vouros, G.A.: Efficient spatio-temporal RDF query processing in large dynamic knowledge bases. In: Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing. Limassol, Cyprus (2019). https://doi.org/10.1145/3297280.3299732

  13. Han, W.S., Lee, J., Lee, J.H.: Turboiso: towards ultrafast and robust subgraph isomorphism search in large graph databases. In: Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data. New York, United States (2013). https://doi.org/10.1145/2463676.2465300

  14. Ren, X., Wang, J.: Exploiting vertex relationships in speeding up subgraph isomorphism over large graphs. VLDB Endow. 8(5), 617–628 (2015). https://doi.org/10.14778/2735479.2735493

    Article  Google Scholar 

  15. Kim, J., Jhin, H., Han, W.S., Hong, S.: Taming subgraph isomorphism for RDF query processing. VLDB Endow. 8(11), 1238–1249 (2015). https://doi.org/10.14778/2809974.2809985

    Article  Google Scholar 

  16. Wu, D., Zhou, H., Shi, J., Mamoulis, N.: Top-k relevant semantic place retrieval on spatiotemporal RDF data. VLDB J. 29, 893–917 (2020). https://doi.org/10.1007/s00778-019-00591-8

    Article  Google Scholar 

  17. Meng, X., Zhu, L., Li, Q., Zhang, X.: Spatiotemporal RDF data query based on subgraph matching. ISPRS Int. J. Geo Inf. 10(12), 832 (2021). https://doi.org/10.3390/ijgi10120832

    Article  Google Scholar 

  18. Liu, B., Hu, B.: Path queries based RDF index. In: Proceedings of the First International Conference on Semantics, Knowledge and Grid. Washington DC, United States (2005). https://doi.org/10.1109/SKG.2005.100

  19. Zhao, P., Han, J.: On graph query optimization in large networks. VLDB Endow. 3(1–2), 340–351 (2010). https://doi.org/10.14778/1920841.1920887

    Article  Google Scholar 

  20. Wu, B., Zhou, Y., Yuan, P., Liu, L., Jin, H.: Scalable SPARQL querying using path partitioning. In: Proceedings of the 31st International Conference on Data Engineering. Seoul, South Korea (2015). https://doi.org/10.1109/ICDE.2015.7113334

  21. Zhang, S., Yang, J., Jin, W.: SAPPER: subgraph indexing and approximate matching in large graphs. VLDB Endow. 3(1–2), 1185–1194 (2010). https://doi.org/10.14778/1920841.1920988

    Article  Google Scholar 

  22. Virgilio, R.D., Rombo, S.E.: Approximate matching over biological RDF graphs. In: Proceedings of the 27th Annual ACM Symposium on Applied Computing. Trento, Italy (2012). https://doi.org/10.1145/2245276.2232000

  23. Virgilio, R.D,, Maccioni, A., Torlone, R.: A similarity measure for approximate querying over RDF data. In: Proceedings of the Joint EDBT/ICDT 2013 Workshops. Genoa, Italy (2013). https://doi.org/10.1145/2457317.2457352

  24. Poulovassilis, A., Wood, P.T.: Combining approximation and relaxation in semantic web path queries. In: Proceedings of the 9th International Semantic Web Conference. Shanghai, China. https://doi.org/10.1007/978-3-642-17746-0_40

  25. Virgilio, R.D., Maccioni, A., Torlone, R.: Approximate querying of RDF graphs via path alignment. Distrib. Parallel Databases 33(4), 555–581 (2015). https://doi.org/10.1007/s10619-014-7142-1

    Article  Google Scholar 

  26. Lu, J., Di, X., Bai, L.: Approximate matching of spatiotemporal RDF data by path. In: Proceedings of the 21st International Conference on Information Reuse and Integration for Data Science. Las Vegas, United States (2020). https://doi.org/10.1109/IRI49571.2020.00032

  27. Li, G., Yan, L., Ma, Z.: A method for fuzzy quantified querying over fuzzy Resource Description Framework graph. Int. J. Intell. Syst. 34(6), 1086–1107 (2019). https://doi.org/10.1002/int.22087

    Article  Google Scholar 

  28. Li, G., Yan, L., Ma, Z.: Pattern match query over fuzzy RDF graph. Knowl.-Based Syst. 165, 460–473 (2019). https://doi.org/10.1016/j.knosys.2018.12.014

    Article  Google Scholar 

  29. Fan, T., Yan, L., Ma, Z.: Storing and querying fuzzy RDF(S) in HBase databases. Int. J. Intell. Syst. 35(4), 751–780 (2020). https://doi.org/10.1002/int.22224

    Article  Google Scholar 

  30. Li, G., Yan, L., Ma, Z.: An approach for approximate subgraph matching in fuzzy RDF graph. Fuzzy Sets Syst. 376, 106–126 (2019). https://doi.org/10.1016/j.fss.2019.02.021

    Article  MathSciNet  Google Scholar 

  31. Pivert, O., Slama, O., Thion, V.: An extension of SPARQL with fuzzy navigational capabilities for querying fuzzy RDF data. In: Proceedings of the 2016 IEEE International Conference on Fuzzy Systems. Vancouver, Canada (2016). https://doi.org/10.1109/FUZZ-IEEE.2016.7737995

  32. YAGO dataset (2017) https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago/downloads/

Download references

Acknowledgements

The authors would like to express their gratitude to the anonymous reviewers for providing very helpful suggestions.

Funding

The work was supported by the National Natural Science Foundation of China (61402087), the Natural Science Foundation of Hebei Province (F2022501015), and the Fundamental Research Funds for the Central Universities (2023GFYD003).

Author information

Authors and Affiliations

Authors

Contributions

Lin Zhu: Methodology, Formal analysis, Writing - original draft, Writing - review & editing; Jiajia Lu: Investigation, Validation, Formal analysis, Writing - original draft; Luyi Bai: Conceptualization, Methodology, Formal analysis, Funding acquisition, Writing - original draft, Writing - review & editing.

Corresponding author

Correspondence to Luyi Bai.

Ethics declarations

Ethical approval and consent to participate

Not applicable.

Human and animal ethics

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, L., Lu, J. & Bai, L. Path-based approximate matching of fuzzy spatiotemporal RDF data. World Wide Web 27, 11 (2024). https://doi.org/10.1007/s11280-024-01247-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11280-024-01247-6

Keywords

Navigation