Abstract
As fuzzy spatiotemporal information continuously increases in RDF database, it is challenging to model and query fuzzy spatiotemporal RDF data efficiently and effectively. However, various researches are studied in temporal RDF database, spatial RDF database, and spatiotemporal RDF database. Querying fuzzy spatiotemporal RDF data has received relatively little attention, especially approximate matching of fuzzy spatiotemporal RDF data. To accomplish this, we first study fuzzy spatiotemporal RDF data graph, spatiotemporal RDF query graph, and path of fuzzy spatiotemporal RDF data graph. Then, we propose a scoring function for approximate evaluation of fuzzy spatiotemporal RDF data graph and spatiotemporal RDF query graph. After dividing the fuzzy spatiotemporal RDF data graphs into five categories based on their structure, we propose the decomposition algorithm, matching algorithm, and combination algorithm for approximate matching of fuzzy spatiotemporal RDF data. Our approach adopts path-based matching so that it is easy to discover the relations between two vertices in fuzzy spatiotemporal RDF data graph. Finally, the experimental results demonstrate the performance advantages of our approach.
Similar content being viewed by others
Data availability
Not applicable.
References
Gutierrez, C., Hurtado, C.A., Vaisman, A.: Temporal RDF. In: Proceedings of the European Semantic Web Conference. Heraklion, Greece (2005). https://doi.org/10.1007/11431053_7
Gutierrez, C., Hurtado, C.A., Vaisman, A.: Introducing time into RDF. IEEE Trans. Knowl. Data Eng. 19(2), 207–218 (2006). https://doi.org/10.1109/TKDE.2007.34
Zhang, F., Wang, K., Li, Z., Cheng, J.: Temporal data representation and querying based on RDF. IEEE Access 7, 85000–85023 (2019). https://doi.org/10.1109/ACCESS.2019.2924550
Pugliese, A., Udrea, O., Subrahmanian, V.S.: Scaling RDF with time. In: Proceedings of the 17th International Conference on World Wide Web. Beijing, China (2008). https://doi.org/10.1145/1367497.1367579
Yan, L., Zhao, P., Ma, Z.: Indexing temporal RDF graph. Computing 101, 1457–1488 (2019). https://doi.org/10.1007/s00607-019-00703-w
Liagouris, J., Mamoulis, N., Bouros, P., Terrovitis, M.: An effective encoding scheme for spatial RDF data. VLDB Endow. 7(12), 1271–1282 (2014). https://doi.org/10.14778/2732977.2733000
Brodt, A., Nicklas, D., Mitschang, B.: Deep integration of spatial query processing into native RDF triple stores. In: Proceedings of the 18th SIGSPATIAL International Symposium on Advances in Geographic Information Systems. San Jose, United States (2010). https://doi.org/10.1145/1869790.1869799
Wang, D., Zou, L., Feng, Y., Shen, X., Tian, J., Zhao, D.: S-store: an engine for large RDF graph integrating spatial information. In: Proceedings of the 18th International Conference on Database Systems for Advanced Applications. Wuhan, China (2013). https://doi.org/10.1007/978-3-642-37450-0_3
Shi, J., Wu, D., Mamoulis, N.: Top-k relevant semantic place retrieval on spatial RDF data. In: Proceedings of the 2016 International Conference on Management of Data. San Francisco, United States (2016). https://doi.org/10.1145/2882903.2882941
Cai, Z., Kalamatianos, G., Fakas, G.J., Mamoulis, N., Papadias, D.: Diversified spatial keyword search on RDF data. VLDB J. 29, 1171–1189 (2020). https://doi.org/10.1007/s00778-020-00610-z
Wang, D., Zou, L., Zhao, D.: gst-store: querying large spatiotemporal RDF graphs. Data Inf. Manage. 1(2), 84–103 (2017). https://doi.org/10.1515/dim-2017-0008
Vlachou, A., Doulkeridis, C., Glenis, A., Santipantakis, G.M., Vouros, G.A.: Efficient spatio-temporal RDF query processing in large dynamic knowledge bases. In: Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing. Limassol, Cyprus (2019). https://doi.org/10.1145/3297280.3299732
Han, W.S., Lee, J., Lee, J.H.: Turboiso: towards ultrafast and robust subgraph isomorphism search in large graph databases. In: Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data. New York, United States (2013). https://doi.org/10.1145/2463676.2465300
Ren, X., Wang, J.: Exploiting vertex relationships in speeding up subgraph isomorphism over large graphs. VLDB Endow. 8(5), 617–628 (2015). https://doi.org/10.14778/2735479.2735493
Kim, J., Jhin, H., Han, W.S., Hong, S.: Taming subgraph isomorphism for RDF query processing. VLDB Endow. 8(11), 1238–1249 (2015). https://doi.org/10.14778/2809974.2809985
Wu, D., Zhou, H., Shi, J., Mamoulis, N.: Top-k relevant semantic place retrieval on spatiotemporal RDF data. VLDB J. 29, 893–917 (2020). https://doi.org/10.1007/s00778-019-00591-8
Meng, X., Zhu, L., Li, Q., Zhang, X.: Spatiotemporal RDF data query based on subgraph matching. ISPRS Int. J. Geo Inf. 10(12), 832 (2021). https://doi.org/10.3390/ijgi10120832
Liu, B., Hu, B.: Path queries based RDF index. In: Proceedings of the First International Conference on Semantics, Knowledge and Grid. Washington DC, United States (2005). https://doi.org/10.1109/SKG.2005.100
Zhao, P., Han, J.: On graph query optimization in large networks. VLDB Endow. 3(1–2), 340–351 (2010). https://doi.org/10.14778/1920841.1920887
Wu, B., Zhou, Y., Yuan, P., Liu, L., Jin, H.: Scalable SPARQL querying using path partitioning. In: Proceedings of the 31st International Conference on Data Engineering. Seoul, South Korea (2015). https://doi.org/10.1109/ICDE.2015.7113334
Zhang, S., Yang, J., Jin, W.: SAPPER: subgraph indexing and approximate matching in large graphs. VLDB Endow. 3(1–2), 1185–1194 (2010). https://doi.org/10.14778/1920841.1920988
Virgilio, R.D., Rombo, S.E.: Approximate matching over biological RDF graphs. In: Proceedings of the 27th Annual ACM Symposium on Applied Computing. Trento, Italy (2012). https://doi.org/10.1145/2245276.2232000
Virgilio, R.D,, Maccioni, A., Torlone, R.: A similarity measure for approximate querying over RDF data. In: Proceedings of the Joint EDBT/ICDT 2013 Workshops. Genoa, Italy (2013). https://doi.org/10.1145/2457317.2457352
Poulovassilis, A., Wood, P.T.: Combining approximation and relaxation in semantic web path queries. In: Proceedings of the 9th International Semantic Web Conference. Shanghai, China. https://doi.org/10.1007/978-3-642-17746-0_40
Virgilio, R.D., Maccioni, A., Torlone, R.: Approximate querying of RDF graphs via path alignment. Distrib. Parallel Databases 33(4), 555–581 (2015). https://doi.org/10.1007/s10619-014-7142-1
Lu, J., Di, X., Bai, L.: Approximate matching of spatiotemporal RDF data by path. In: Proceedings of the 21st International Conference on Information Reuse and Integration for Data Science. Las Vegas, United States (2020). https://doi.org/10.1109/IRI49571.2020.00032
Li, G., Yan, L., Ma, Z.: A method for fuzzy quantified querying over fuzzy Resource Description Framework graph. Int. J. Intell. Syst. 34(6), 1086–1107 (2019). https://doi.org/10.1002/int.22087
Li, G., Yan, L., Ma, Z.: Pattern match query over fuzzy RDF graph. Knowl.-Based Syst. 165, 460–473 (2019). https://doi.org/10.1016/j.knosys.2018.12.014
Fan, T., Yan, L., Ma, Z.: Storing and querying fuzzy RDF(S) in HBase databases. Int. J. Intell. Syst. 35(4), 751–780 (2020). https://doi.org/10.1002/int.22224
Li, G., Yan, L., Ma, Z.: An approach for approximate subgraph matching in fuzzy RDF graph. Fuzzy Sets Syst. 376, 106–126 (2019). https://doi.org/10.1016/j.fss.2019.02.021
Pivert, O., Slama, O., Thion, V.: An extension of SPARQL with fuzzy navigational capabilities for querying fuzzy RDF data. In: Proceedings of the 2016 IEEE International Conference on Fuzzy Systems. Vancouver, Canada (2016). https://doi.org/10.1109/FUZZ-IEEE.2016.7737995
YAGO dataset (2017) https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago/downloads/
Acknowledgements
The authors would like to express their gratitude to the anonymous reviewers for providing very helpful suggestions.
Funding
The work was supported by the National Natural Science Foundation of China (61402087), the Natural Science Foundation of Hebei Province (F2022501015), and the Fundamental Research Funds for the Central Universities (2023GFYD003).
Author information
Authors and Affiliations
Contributions
Lin Zhu: Methodology, Formal analysis, Writing - original draft, Writing - review & editing; Jiajia Lu: Investigation, Validation, Formal analysis, Writing - original draft; Luyi Bai: Conceptualization, Methodology, Formal analysis, Funding acquisition, Writing - original draft, Writing - review & editing.
Corresponding author
Ethics declarations
Ethical approval and consent to participate
Not applicable.
Human and animal ethics
Not applicable.
Consent for publication
Not applicable.
Competing interests
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Zhu, L., Lu, J. & Bai, L. Path-based approximate matching of fuzzy spatiotemporal RDF data. World Wide Web 27, 11 (2024). https://doi.org/10.1007/s11280-024-01247-6
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11280-024-01247-6