Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Applications of Independent Component Analysis in Wireless Communication Systems

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Independent component analysis (ICA) is a signal processing technique used for separating statistically independent and non-Gaussian mixed signals. It is widely used in different areas e.g., wireless communication, speech and biomedical signal processing, vibration analysis, and machinery fault diagnosis. In wireless communication systems, ICA has been used in multiple input multiple output systems, wireless sensor networks, cognitive radio networks, code division multiple access , and orthogonal frequency division multiplexing. The applications of ICA in wireless communication include the suppression of inter symbol interference, cancellation of inter channel interference, direction of arrival estimation, automatic classification of modulation, and spectrum sensing etc. This paper provides a comprehensive survey on the applications of ICA in various wireless communication systems along with the survey of mixing models used in the theory of ICA. The techniques for estimating the number of signals in received mixed signals are also studied. We also surveyed the ICA applications in time varying mixing scenario. The challenges and limitations of ICA regarding wireless communication systems are also presented. This paper also outlines future research directions related to the field of applications of ICA in wireless communication systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Supper-Gaussian means that the pdf is more spiky as compared to Gaussian distribution.

  2. Sub-Gaussian means that the pdf is flat as compare to Gaussian distribution.

  3. The Negentropy means negative entropy. This concept is introduced to get positive value of entropy

References

  1. Zhang, J. Y., & Zhang, H. (2013). Monitoring of time-varying processes using kernel independent component analysis. Chemical Engineering Science, 88, 2332.

    Article  Google Scholar 

  2. Li, H., & Adali, T. (2008). A class of complex ICA algorithms based on the kurtosis cost function. IEEE Transactions on Neural Networks, 19(3), 408–420. doi:10.1109/TNN.2007.908636.

    Article  Google Scholar 

  3. Razaghi, H., et al. (2013). Assessing material densities by vibration analysis and independent component analysis. Malaysian Journal of Fundamental and Applied Sciences, 9, 123–128.

    Google Scholar 

  4. Li, X., Li, W., Sun, Y., & Zhao, H. (2010). Blind source separation of vibration signal of electric traction experiment system. In International conference on intelligent control and information processing (ICICIP) (pp. 93–96). doi:10.1109/ICICIP.2010.5564224.

  5. Saruwatari, H., Mori, Y., Takatani, T., Ukai, S., Shikano, K., Hiekata, T., & Morita, T. (2005). Two-stage blind source separation based on ica and binary masking for real-time robot audition system. In IEEE international conference on intelligent robots and systems, (IROS 05) (pp. 2303–2308). doi:10.1109/IROS.2005.1544983.

  6. Shi, G., Lou, W., & Zhang, J. (2009). Research and application of ICA technique in fault diagnosis for equipments. In IEEE international conference on intelligent computing and intelligent systems, (ICIS) (Vol. 4, pp. 310–313). doi:10.1109/ICICISYS.2009.5357659.

  7. Mehrabian, H., Chopra, R., & Martel, A. (2013). Calculation of intravascular signal in dynamic contrast enhanced-MRI using adaptive complex independent component analysis. IEEE Transactions on Medical Imaging, 32(4), 699–710. doi:10.1109/TMI.2012.2233747.

    Article  Google Scholar 

  8. Uddin, Z., & Alam, F. (2010). Hardware implementation of blind source separation of speech signals using independent component analysis. International Journal of Electrical & Computer Sciences, 10, 85–86.

    Google Scholar 

  9. Obradovic, D., Madhu, N., Szabo, A., & Wong, C. S. (2004). Independent component analysis for semi-blind signal separation in MIMO mobile frequency selective communication channels. In IEEE international joint conference on neural networks (Vol. 1, p. 58). doi:10.1109/IJCNN.2004.1379869.

  10. Gupta, M., & Santhanam, B. (2004). Ica based blind adaptive MAI suppression in DS-CDMA systems. In 3rd IEEE signal processing education workshop (pp. 201–205). doi:10.1109/DSPWS.2004.1437942.

  11. Zhu, Y., & Vikram, A., Tracking multiple targets using blind source separation algorithms. In Electrical and Computer Engineering Department. Cleveland State University. Tech Report CSU-ECE-TR-08-02.

  12. Ivrigh, S., Sadough, S. S., & Ghorashi, S. (2011). A blind source separation technique for spectrum sensing in cognitive radio networks based on kurtosis metric. In 1st international econference on computer and knowledge engineering (ICCKE) (pp. 333–337). doi:10.1109/ICCKE.2011.6413374.

  13. Landqvist, R., & Mohammed, A. (2005). Novel application of projection approximation subspace tracking algorithm for whitening in wireless, In RVK.

  14. Curnew, S., & Ilow, J. (2007). Blind signal separation in mimo ofdm systems using ica and fractional sampling. In International symposium on signals, systems and electronics, (ISSSE ’07) (pp. 67–70). doi:10.1109/ISSSE.2007.4294415.

  15. Zarzoso, V., & Comon, P. (2010). Robust independent component analysis by iterative maximization of the kurtosis contrast with algebraic optimal step size. IEEE Transactions on Neural Networks, 21(2), 248–261. doi:10.1109/TNN.2009.2035920.

    Article  Google Scholar 

  16. Ameri, M. R., Shokripour, M., Mohammadpour, A., & Nassiri, V. (2013). Parametric independent component analysis for stable distributions. Artificial Intelligence Research, 2, 27–34.

    Article  Google Scholar 

  17. Guidara, R., Hosseini, S., & Deville, Y. (2009). Blind separation of nonstationary Markovian sources using an equivariant Newton–Raphson algorithm. IEEE Signal Processing Letters, 16(5), 426–429. doi:10.1109/LSP.2009.2016448.

    Article  Google Scholar 

  18. Jun, B., Xiao-hong, S., Hai-yan, W., & Xue, Z. (2009). Natural gradient improvement methods in blind source separation. In 2nd international congress on image and signal processing, (CISP ’09) (pp. 1–5). doi:10.1109/CISP.2009.5301512.

  19. Zhang, N., & Liu, T. (2009). The application of ant colony optimization algorithm in linear-combination blind source separation problem. In 2nd international congress on image and signal processing, (CISP ’09) (pp. 1–4). doi:10.1109/CISP.2009.5304441.

  20. Xiang, Y., Ng, S. K., & Nguyen, V. K. (2010). Blind separation of mutually correlated sources using precoders. IEEE Transactions on Neural Networks, 21(1), 82–90. doi:10.1109/TNN.2009.2034518.

    Article  Google Scholar 

  21. Sawada, H., Araki, S., & Makino, S. (2011). Underdetermined convolutive blind source separation via frequency bin-wise clustering and permutation alignment. IEEE Transactions on Audio, Speech, and Language Processing, 19(3), 516–527. doi:10.1109/TASL.2010.2051355.

    Article  Google Scholar 

  22. Jin, Q., & Liang, G. (2010). A new algorithm of infomax for small numbers of sound signal separation. In International conference on artificial intelligence and education (ICAIE) (pp. 159–162). doi:10.1109/ICAIE.2010.5641410.

  23. Shi, Z., Tan, X., Jiang, Z., Zhang, H., & Guo, C. (2010). Noisy blind source separation by nonlinear autocorrelation. In 3rd international congress on image and signal processing (CISP) (Vol. 7, pp. 3152–3156). doi:10.1109/CISP.2010.5647807.

  24. Gonzalez, E., Gorriz, J., Ramirez, J., & Puntonet, C. (2010). Elitist Genetic algorithm guided by higher order statistic for blind separation of digital signals. In 36th annual IEEE industrial electronics society conference (IECON) (pp. 1123–1128). doi:10.1109/IECON.2010.5675526.

  25. Lee, T.-W., et al. (1999). Blind source separation of more sources than mixtures using overcomplete representations. IEEE Signal Processing Letters, 6, 87–90.

    Article  Google Scholar 

  26. Tsalaile, T., Sameni, R., Sanei, S., Jutten, C., & Chambers, J. (2009). Sequential blind source extraction for quasi-periodic signals with time-varying period. IEEE Transactions on Biomedical Engineering, 56(3), 646–655. doi:10.1109/TBME.2008.2002141.

    Article  Google Scholar 

  27. Leong, W. Y., & Mandic, D. (2008). Post-nonlinear blind extraction in the presence of ill-conditioned mixing. IEEE Transactions on Circuits and Systems, 55(9), 2631–2638. doi:10.1109/TCSI.2008.922022.

    Article  MathSciNet  Google Scholar 

  28. Cao, J., Murata, N., Amari, S.-I., Cichocki, A., & Takeda, T. (2003). A robust approach to independent component analysis of signals with high-level noise measurements. IEEE Transactions on Neural Networks, 14(3), 631–645. doi:10.1109/TNN.2002.806648.

    Article  Google Scholar 

  29. Ma, X., Zhao, C. H., & Qiao, G. (2009). The underwater acoustic MIMO ofdm system channel equalizer basing on independent component analysis. In International conference on communications and mobile computing (CMC ’09) (Vol. 2, pp. 568–572). doi:10.1109/CMC.2009.13.

  30. Chen, R.-B., Chen, Y., & Hrdle, W. K. (2014). Tvica—time varying independent component analysis and its application to financial data, SFB 649, Humboldt-Universitt zu Berlin Spandauer Straße 1, D-10178 Berlin.

  31. Wu, X., Fu, R., Xu, C., & Wu, C. (2010). Application of immune clonal algorithm and mutual information in nonlinear blind source separation. In Sixth international conference on natural computation (ICNC) (Vol. 6, pp. 2847–2851). doi:10.1109/ICNC.2010.5583525.

  32. Sandmair, A., Leon, F. P., & Zaib, A. (2010). Adaptive underdetermined ICA for handling an unknown number of sources. In Latent variable analysis and signal separation, lecture notes in computer science (Vol. 6365, pp. 181–188).

  33. Sawada, H., Winter, S., Mukai, R., Araki, S., & Makino, S. (2004). Estimating the number of sources for frequency-domain blind source separation. In Independent component analysis and blind signal separation lecture notes in computer science (Vol. 3195, pp. 610–617).

  34. Hui, L., Yue-hong, S., & Shi-zhou, C. (2010). A robust on-line blind separation algorithm with dynamic source number based on neural network. In Second international conference on networks security wireless communications and trusted computing (NSWCTC) (Vol. 1, pp. 99–102). doi:10.1109/NSWCTC.2010.31.

  35. Zhang, Y., & Cao, J. (2010). Dynamic blind source separation using subspace method. In International conference on web information systems and mining (WISM) (Vol. 1, pp. 433–436). doi:10.1109/WISM.2010.168.

  36. Cheng, W., Lee, S., & Zhang, Z., Dissimilarity measures for ICA-based source number estimation. In Proceedings of the international manufacturing science and engineering conference (MSEC) June 4–8, Notre Dame, IN, USA.

  37. Wu, W., Su, X., Chen, X., & Hou, G. (2010). Source number estimation based on wavelet packet and singular value decomposition. In IEEE international conference on intelligent computing and intelligent systems (ICIS) (Vol. 1, pp. 540–544). doi:10.1109/ICICISYS.2010.5658439.

  38. Tan, B., & Li, W. (2008). Source signals’ number estimation based on fuzzy clustering in blind separation of BPSK signals. In Fifth international conference on fuzzy systems and knowledge discovery (FSKD ’08) (Vol. 1, pp. 72–76). doi:10.1109/FSKD.2008.507.

  39. Qiu, R., Hu, Z., Chen, Z., Guo, N., Ranganathan, R., Hou, S., et al. (2011). Cognitive radio network for the smart grid: Experimental system architecture, control algorithms, security, and microgrid testbed. IEEE Transactions on Smart Grid, 2(4), 724–740. doi:10.1109/TSG.2011.2160101.

    Article  Google Scholar 

  40. Ivrigh, S. S., & Sadough, S. M. (2012). Spectrum sensing for cognitive radio systems through primary user activity prediction. Radio Engineering, 21, 1092–1100.

    Google Scholar 

  41. Khajavi, N., Sadeghi, S., & Sadough, S.-S. (2010) An improved blind spectrum sensing technique for cognitive radio systems. In 5th international symposium on telecommunications (IST) (pp. 13–17). doi:10.1109/ISTEL.2010.5733990.

  42. Khajavi, N. T., Ivrigh, S. S., & Sadough, S. M. S. (2011). A novel framework for spectrum sensing in cognitive radio networks. IEICE Transactions on Communications, E94–B, 2600–2609.

    Article  Google Scholar 

  43. Liu, X., Tan, X., & Anghuwo, A. (2009). Spectrum detection of cognitive radio based on blind signal separation. In IEEE youth conference on information, computing and telecommunication, YC-ICT ’09 (pp. 166–169). doi:10.1109/YCICT.2009.5382401.

  44. Ivrigh, S. S., Sadough, S. M., & Ghorashi, S. A. (2012). A blind source separation-based positioning algorithm for cognitive radio systems. Research Journal of Applied Sciences, Engineering and Technology, 4, 299–305.

    Google Scholar 

  45. Khosravy, M., Alsharif, M. R., & Yamashita, K. (2010). An optimum ICA based multiuser data separation for short message service. In Advances in computer science and information technology lecture notes in computer science (Vol. 6059, pp. 279–286).

  46. Gupta, M., & Santhanam, B. (2004). Prior ICA based blind multiuser detection in DS-CDMA systems. In: Thirty-eighth asilomar conference on signals, systems and computers (Vol. 2, pp. 2155–2159). doi:10.1109/ACSSC.2004.1399548.

  47. Raju, K., Ristaniemi, T., Karhunen, J., & Oja, E. (2006). Jammer suppression in DS-CDMA arrays using independent component analysis. IEEE Transactions on Wireless Communications, 5(1), 77–82. doi:10.1109/TWC.2006.1576531.

    Article  Google Scholar 

  48. Mikhael, W. B., & Yang, T. (2006). A gradient-based optimum block adaptation ICA technique for interference suppression in highly dynamic communication channels. EURASIP Journal on Applied Signal Processing, 2006, 1–10.

  49. Lee, Z.-H., & Lim, W. G. (2009). Multi-user multimodulus algorithm in blind source separation and equalization for MIMO systems. In IEEE 9th Malaysia international conference on communications (MICC) (pp. 234–237). doi:10.1109/MICC.2009.5431502.

  50. Sarperi, L., Zhu, X., & Nandi, A. (2007). Blind OFDM receiver based on independent component analysis for multiple-input multiple-output systems. IEEE Transactions on Wireless Communications, 6(11), 4079–4089. doi:10.1109/TWC.2007.060191.

    Article  Google Scholar 

  51. Kattepur, A., Sattar, F., & See, C. M. S. (2010). Doppler aided blind source separation of communication signals. In 10th international conference on information sciences signal processing and their applications (ISSPA) (pp. 526–529). doi:10.1109/ISSPA.2010.5605598.

  52. Zhao, X., & Davies, M. (2010). Coding-assisted blind MIMO separation and decoding. IEEE Transactions on Vehicular Technology, 59(9), 4408–4417. doi:10.1109/TVT.2010.2066588.

    Article  Google Scholar 

  53. Jiang, Y., Zhu, X., Lim, E., Dong, L., & Huang, Y. (2011). Low-complexity independent component analysis based semi-blind receiver for wireless multiple-input multiple-output systems. International Journal of Design, Analysis and Tools for Circuits and Systems, 2, 91–98.

    Google Scholar 

  54. Wangn, X., Huang, Z., Zhou, Y., & Ren, X. (2013). Approaches and applications of semi-blind signal extraction for communication signals based on constrained independent component analysis: The complex case. Neurocomputing, 101, 204216.

    Google Scholar 

  55. Zhao, L., Jia, Y., Yang, S., & Zhang, C. (2008). Blind beamforming algorithm based on improved complex value independent component analysis. In 4th international conference on wireless communications, networking and mobile computing (WiCOM ’08) (pp. 1–4). doi:10.1109/WiCom..486.

  56. Parmar, S. D., & Unhelkar, B. (2009). Separation performance of ICA algorithms in communication systems. In International conference on multimedia, signal processing and communication technologies, (IMPACT ’09) (pp. 142–145). doi:10.1109/MSPCT.2009.5164195.

  57. Muhlhaus, M., Oner, M., Dobre, O., Jkel, H., & Jondral, F. (2012). Automatic modulation classification for MIMO systems using fourth-order cumulants. In IEEE vehicular technology conference (VTC) (pp. 1–5). doi:10.1109/VTCFall..6399061.

  58. Agirman-Tosun, H., et al. (2011). Modulation classification of MIMO-OFDM signals by independent component analysis and support vector machines. In Signals, systems and computers (ASILOMAR) (pp. 1903–1907). doi:10.1109/ACSSC.2011.6190354.

  59. Muhlhaus, M., Oner, M., Dobre, O., Jakel, H., & Jondral, F. (2013). A novel algorithm for MIMO signal classification using higher-order cumulants. In IEEE radio and wireless symposium (RWS) (pp. 7–9). doi:10.1109/RWS.2013.6486623.

  60. Zarzoso, V. (2003). Exploiting independence for co-channel interference cancellation and symbol detection in multiuser digital communications. Seventh International Symposium on Signal Processing and Its Applications, 2, 303–306. doi:10.1109/ISSPA.2003.1224874.

    Google Scholar 

  61. Zarzoso, V., & Nandi, A. K., Improving mimo channel equalization with independent component analysis. In Proceedings of the 6th IMA international conference on mathematics in signal processing (pp. 223–226). UK: Cirencester, Dec. 14–16.

  62. Weikert, O., & Zolzer, U. (2006). New approach for resolving ambiguities for semi-blind equalization of MIMO frequency selective channels. In IEEE 17th international symposium on personal, indoor and mobile radio communications (pp. 1–5). doi:10.1109/PIMRC.2006.254379.

  63. Haghighat, A. (2006). ICA-based signal equalization for digital receivers. In IEEE 64th vehicular technology conference, (VTC-06) (pp. 1–5). doi:10.1109/VTCF.2006.384.

  64. Ding, Z., Ratnarajah, T., & Cowan, C. (2006). Adaptive semi-blind ICA-based spatial equalization for MIMO Rayleigh fading channels with optimal step size. In IEEE international conference on acoustics, speech and signal processing, (ICASSP 06) (Vol. 4, pp. 1520–6149). doi:10.1109/ICASSP.2006.1661096.

  65. Sarperi, L., Zhu, X., & Nandi, A. (2008). Semi-blind layered space-frequency equalization for single-carrier MIMO systems with block transmission. IEEE Transactions on Wireless Communications, 7(4), 1203–1207. doi:10.1109/TWC.2008.061028.

    Article  Google Scholar 

  66. Zhao, X., & Davies, M. (2008). A feasible blind equalization scheme in large constellation MIMO systems. In IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 1845–1848). doi:10.1109/ICASSP.2008.4517992.

  67. Gao, J., Zhu, X., & Nandi, A. K. (2008). Linear precoding aided blind equalization with independent component analysis in MIMO OFDM systems. In 16th European signal processing conference (EUSIPCO 2008). Switzerland: Lausanne, August 25–29.

  68. Liu, H., & Sun, J. (2009). Blind MIMO-OFDM channel estimation based on ICA and KRLS algorithm. In 5th international conference on wireless communications, networking and mobile computing, (WiCom ’09) (pp. 1–5). doi:10.1109/WICOM.2009.5304098.

  69. Homayounzadeh, A., & Shirazi, M. (2009). ICA-based equalization of wireless channels in block transmission communication systems. In International Conference on Signal Processing Systems (pp. 201–204). doi:10.1109/ICSPS.2009.161.

  70. Gao, J., Zhu, X., & Nandi, A. (2009). Non-redundant precoding and PAPR reduction in MIMO OFDM systems with ICA based blind equalization. IEEE Transactions on Wireless Communications, 8(6), 3038–3049. doi:10.1109/TWC.2009.080541.

    Article  Google Scholar 

  71. Gu, F., Zhang, H., & Zhu, D. (2010). Maximum likelihood blind equalization via blind separation using fractional sampling. In 12th IEEE International Conference on Communication Technology (ICCT) (pp. 195–198). doi:10.1109/ICCT.2010.5689286.

  72. Radenkovic, M. S., Bose, T., & Ramkumar, B. (2010). Blind adaptive equalization of MIMO systems: New recursive algorithms and convergence analysis. IEEE Transactions on Circuits and Systems, 57(7), 1475–1488. doi:10.1109/TCSI.2010.2052486.

    Article  MathSciNet  Google Scholar 

  73. Zhang, Y., & Kassam, S. (2011). Blind equalization using coarse quantizer BSS nonlinearity. In 45th annual conference on information sciences and systems (CISS) (pp. 1–6). doi:10.1109/CISS.2011.5766222.

  74. Daumont, S., & Le Guennec, D. (2009). Adaptive analytical MMA with time-varying mimo channels and diversity in interception context. In 16th international conference on digital signal processing (pp. 1–6). doi:10.1109/ICDSP.2009.5201197.

  75. DeYoung, M., & Evans, B. (2007) Blind source separation with a time-varying mixing matrix. In Forty-first asilomar conference on signals, systems and computers, (ACSSC) (pp. 626–630). doi:10.1109/ACSSC.2007.4487289.

  76. Hori, G., & Tanaka, T. (2009). Extension of joint diagonalization for moving targets. In 3rd IEEE international workshop on computational advances in multi-sensor adaptive processing (CAMSAP) (pp. 309–311). doi:10.1109/CAMSAP.2009.5413270.

  77. Mukai, R., Sawada, H., Araki, S., & Makino, S. (2003). Robust real-time blind source separation for moving speakers in a room. In IEEE international conference on acoustics, speech, and signal processing, (ICASSP ’03) (Vol. 5, pp. V-469–V-472). doi:10.1109/ICASSP.2003.1200008.

  78. Prieto, R., & Jinachitra, P. (2005). Blind source separation for time-variant mixing systems using piecewise linear approximations. In IEEE international conference on acoustics, speech, and signal processing, (ICASSP ’05) (Vol. 5, pp. 301–304). doi:10.1109/ICASSP.2005.1416300.

  79. Hsieh, H.-L., & Chien, J.-T. (2010). Online Bayesian learning for dynamic source separation. In IEEE international conference on acoustics speech and signal processing (ICASSP) (pp. 1950–1953). doi:10.1109/ICASSP.2010.5495299.

  80. Stefatos, G., & Hamza, A. B. (2010). Dynamic independent component analysis approach for fault detection and diagnosis. Expert Systems with Applications, 37(12), 8606–8617. doi:10.1016/j.eswa.2010.06.101.

    Article  Google Scholar 

  81. Yu, M., Naqvi, S. M., & Chambers, J. (2010). A multimodal approach to blind source separation of moving sources. IEEE Journal of Selected Topics in Signal Processing, 4(5), 895–910. doi:10.1109/JSTSP.2010.2057198.

    Article  Google Scholar 

  82. Wang, R., Hou, C., & Chen, D. (2010) Blind separation of instantaneous linear mixtures of cyclostationary signals. In International conference on image analysis and signal processing (IASP) (pp. 492–495). doi:10.1109/IASP.2010.5476069.

  83. Kaftory, R., & Zeevi, Y. (2013). Blind separation of time/position varying mixtures. IEEE Transactions on Image Processing, 22(1), 104–118. doi:10.1109/TIP.2012.2197005.

    Article  MathSciNet  Google Scholar 

  84. Hsieh, H.-L., & Chien, J.-T. (2011). Nonstationary and temporally correlated source separation using Gaussian process. In IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 2120–2123).

  85. Zheng, Y., Lombard, A., & Kellermann, W. (2011). An improved combination of directional BSS and a source localizer for robust source separation in rapidly time-varying acoustic scenarios. In Joint workshop on hands-free speech communication and microphone arrays (HSCMA) (pp. 58–63). doi:10.1109/HSCMA.2011.5942410.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahoor Uddin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uddin, Z., Ahmad, A., Iqbal, M. et al. Applications of Independent Component Analysis in Wireless Communication Systems. Wireless Pers Commun 83, 2711–2737 (2015). https://doi.org/10.1007/s11277-015-2565-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2565-1

Keywords

Navigation