Nothing Special   »   [go: up one dir, main page]

Skip to main content

Independent Component Analysis and Bayesian Separation Methods

  • Chapter
  • First Online:
Nonlinear Blind Source Separation and Blind Mixture Identification

Abstract

This chapter presents the first major class of blind source separation and blind mixture identification methods intended for linear-quadratic mixtures (including their bilinear and purely quadratic restricted versions), namely methods strongly based on a probabilistic framework. This mainly includes not only nonlinear versions of Independent Component Analysis (ICA) but also Bayesian methods. The description of these methods is split into two parts, depending whether the source signals are independent and identically distributed (i.i.d) or not. Various statistical approaches are considered, namely moment- and cumulant-based methods, the maximum likelihood approach, and methods based on information theory (especially using mutual information), whose connection with the maximum likelihood approach is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 15.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This system was originally [56, 68] the linear recurrent, or feedback, neural network described in Sect. 3.4.1. Most methods then used the system defined by (3.1), which may be considered as a direct, or feedforward, network.

  2. 2.

    For this very specific mixing model, the analytical expression of the inverse of the mixing model is known, as explained in Sect. 3.2, and might therefore be used instead.

  3. 3.

    The mixing equations (4.14)–(4.15) obtained here are similar to the Eqs. (3.17)–(3.18) derived above for the bilinear mixing model, thanks to the use of the notations (4.12)–(4.13). However, it should be clear that this is here obtained by using the notations L ij for coefficients associated with quadratic (auto-)terms, whereas in the bilinear model (3.17)–(3.18) they were used for coefficients associated with linear terms, which was more coherent with these notations L ij.

  4. 4.

    In the general framework of BSS/BMI, Bayesian methods may also be used to estimate only one of the above types of unknowns: see, e.g., p. 471 of [85].

  5. 5.

    For linear-quadratic mixing models, and especially bilinear ones, various other investigations were also reported concerning the use of Bayesian methods, but for the non-blind (or supervised) configuration, i.e., when the mixing model parameters are known and only the sources are to be estimated (see, e.g., [54]), which is out of the scope of this book. Other types of non-blind methods for such mixtures are reported, e.g., in [76].

References

  1. K. Abed-Meraim, A. Belouchrani Y. Hua, Blind identification of a linear-quadratic mixture of independent components based on joint diagonalization procedure, in 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings, vol. 5, Atlanta, GA (1996), pp. 2718–2721

    Google Scholar 

  2. R. Ando, L.T. Duarte, C. Jutten, R. Attux, A blind source separation method for chemical sensor arrays based on a second order mixing model, in Proceedings of the 23rd European Signal Processing Conference (EUSIPCO 2015), Nice (2015), pp. 938–942

    Google Scholar 

  3. A. Belouchrani, K. Abed-Meraim, J.-F. Cardoso, E. Moulines, A blind source separation technique using second-order statistics. IEEE Trans. Signal Process. 45(2), 434–444 (1997)

    Article  Google Scholar 

  4. J.-F. Cardoso, Infomax and maximum likelihood for blind source separation. IEEE Signal Process. Lett. 4(4), 112–114 (1997)

    Article  Google Scholar 

  5. J.F. Cardoso, The three easy routes to independent component analysis: contrasts and geometry, in Proceedings of the 3rd International Conference on Independent Component Analysis and Signal Separation (ICA’2001), San Diego (2001)

    Google Scholar 

  6. C. Chaouchi, Y. Deville, S. Hosseini, Nonlinear source separation: a maximum likelihood approach for quadratic mixtures, in Proceedings of the 30th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering (MaxEnt 2010), Chamonix (2010)

    Google Scholar 

  7. S. Chaouchi, Y. Deville, S. Hosseini, Cumulant-based estimation of quadratic mixture parameters for blind source separation, in Proceedings of the 18th European Signal Processing Conference (EUSIPCO 2010), Aalborg (2010), pp. 1826–1830

    Google Scholar 

  8. P. Comon, Independent Component Analysis, a new concept?. Signal Process. 36(3), 287–314 (1994)

    Article  Google Scholar 

  9. Y. Deville, Système pour estimer des signaux reçus sous forme de signaux mélangés. Brevet français, priorité 22.02.1995 FR 9502051. Demande de brevet européen EP 0 729 037 A1. Y. Deville, “System for estimating signals received in the form of mixed signals”, United States Patent US005909646A (1995)

    Google Scholar 

  10. Y. Deville, TRAITEMENT DU SIGNAL: Signaux temporels et spatiotemporels - Analyse des signaux, théorie de l’information, traitement d’antenne, séparation aveugle de sources (Ellipses Editions Marketing, Paris, 2011)

    Google Scholar 

  11. Y. Deville, Blind source separation and blind mixture identification methods, in Wiley Encyclopedia of Electrical and Electronics Engineering, ed. by J. Webster (Wiley, Hoboken, 2016), pp. 1–33

    Google Scholar 

  12. Y. Deville, S. Hosseini, A. Deville, Effect of indirect dependencies on maximum likelihood and information theoretic blind source separation for nonlinear mixtures. Signal Process. 91(4), 793–800 (2011)

    Article  Google Scholar 

  13. L.T. Duarte, Design of smart chemical sensor arrays: an approach based on source separation methods, Ph.D., Grenoble, 2009

    Google Scholar 

  14. L.T. Duarte, C. Jutten, S. Moussaoui, Bayesian source separation of linear-quadratic and linear mixtures through a MCMC method, in Proceedings of IEEE MLSP, Grenoble (2009)

    Google Scholar 

  15. L.T. Duarte, C. Jutten, S. Moussaoui, Séparation de sources dans le cas de mélanges linéaires-quadratiques et linéaires par une approche bayésienne, in Proceedings of GRETSI 2009, Dijon (2009)

    Google Scholar 

  16. L.T. Duarte, R. Suyama, R. Attux, Y. Deville, J.M.T. Romano, C. Jutten, Blind source separation of overdetermined linear-quadratic mixtures, in Proceedings of the 9th International Conference on Latent Variable Analysis and Signal Separation (LVA/ICA 2010). Lecture Notes in Computer Science, vol. 6365 (Springer, St. Malo, 2010), pp. 263–270

    Google Scholar 

  17. L. T. Duarte, C. Jutten, S. Moussaoui, Bayesian source separation of linear and linear-quadratic mixtures using truncated priors. J. Signal Process. Syst. 65(3), 311–323 (2011)

    Article  Google Scholar 

  18. D.G. Fantinato, R.A. Ando, A. Neves, L.T. Duarte, C. Jutten, R. Attux, A quadratic divergence-based independence measure applied to linear-quadratic mixtures, in Proceedings of XXXIV Simposio Brasileiro de Telecomunicacoes, SBrT 2016, Santarem (2016), pp. 279–283

    Google Scholar 

  19. D.G. Fantinato, L.T. Duarte, B. Rivet, B. Ehsandoust, R. Attux, C. Jutten, Gaussian processes for source separation in overdetermined bilinear mixtures, in Proceedings of the 13th International Conference on Latent Variable Analysis and Signal Separation (LVA/ICA 2017). Lecture Notes in Computer Science, vol. 10169 (Springer International Publishing AG, Grenoble, 2017), pp. 300–309

    Google Scholar 

  20. M. Gaeta, J.-L. Lacoume, Source separation without a priori knowledge: the maximum likelihood solution, in European Signal Processing Conference (EUSIPCO) (1990), pp. 621–624

    Google Scholar 

  21. P. Georgiev, Blind source separation of bilinearly mixed signals, in Proceedings of ICA 2001, San Diego (2001), pp. 328–331

    Google Scholar 

  22. R. Guidara, S. Hosseini, Y. Deville, Blind separation of nonstationary Markovian sources using an equivariant Newton-Raphson algorithm, IEEE Signal Process. Lett. 16(5), 426–429 (2009). Comments: see also Non-stationary Markovian blind source separation. Solving estimating equations using an equivariant Newton-Raphson algorithm, online Technical Report (2008). http://www.ast.obs-mip.fr/users/ydeville/papers/rgshyd_sept2008_tech_report.pdf

  23. R. Guidara, S. Hosseini, Y. Deville, Maximum likelihood blind image separation using non-symmetrical half-plane Markov random fields. IEEE Trans. Image Process. 18(11), 2435–2450 (2009)

    Article  MathSciNet  Google Scholar 

  24. A. Halimi, Y. Altmann, N. Dobigeon, J.-Y. Tourneret, Nonlinear unmixing of hyperspectral images using a generalized bilinear model. IEEE Trans. Geosci. Remote Sensing 49(11), 4153–4162 (2011)

    Article  Google Scholar 

  25. J. Hérault, B. Ans, Circuits neuronaux à synapses modifiables: décodage de messages composites par apprentissage non-supervisé. C.R. de l’Académie des Sciences de Paris, t.299(13), 525–528 (1984)

    Google Scholar 

  26. S. Hosseini, Y. Deville, Blind separation of linear-quadratic mixtures of real sources using a recurrent structure, in Proceedings of the 7th International Work-conference on Artificial And Natural Neural Networks (IWANN 2003), ed. by J. Mira, J.R. Alvarez, vol. 2 (Springer, Mao, Menorca, 2003), pp. 241–248

    Google Scholar 

  27. S. Hosseini, Y. Deville, Blind maximum likelihood separation of a linear-quadratic mixture, in Proceedings of the Fifth International Conference on Independent Component Analysis and Blind Signal Separation (ICA 2004). Lecture Notes in Computer Science, vol. 3195 (Springer, Granada, 2004), pp. 694–701. ISSN 0302-9743, ISBN 3-540-23056-4. Erratum: see also “Correction to “Blind maximum likelihood separation of a linear-quadratic mixture””, available on-line at http://arxiv.org/abs/1001.0863

  28. S. Hosseini, Y. Deville, Recurrent networks for separating extractable-target nonlinear mixtures. Part II: blind configurations. Signal Process. 93(4), 671–683 (2013)

    Google Scholar 

  29. S. Hosseini, Y. Deville, Blind separation of parametric nonlinear mixtures of possibly autocorrelated and non-stationary sources. IEEE Trans. Signal Process. 62(24), 6521–6533 (2014)

    Article  MathSciNet  Google Scholar 

  30. S. Hosseini, C. Jutten, D.T. Pham, Markovian source separation. IEEE Trans. Signal Process. 51(12), 3009–3019 (2003)

    Article  MathSciNet  Google Scholar 

  31. A. Hyvärinen, J. Karhunen, E. Oja, Independent Component Analysis (Wiley, New York, 2001)

    Book  Google Scholar 

  32. L. Jarboui, S. Hosseini, R. Guidara, Y. Deville, A. Ben Hamida, A MAP-based NMF approach to hyperspectral image unmixing using a linear-quadratic mixture model, in Proceedings of the 2016 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2016), Shanghai (2016), pp. 3356–3360

    Google Scholar 

  33. L. Jarboui, Y. Deville, S. Hosseini, R. Guidara, A. Ben Hamida, L.T. Duarte, A second-order blind source separation method for bilinear mixtures. Multidim. Syst. Signal Process. 29(3), 1153–1172 (2018)

    Article  MathSciNet  Google Scholar 

  34. C. Jutten, J. Hérault, Blind separation of sources, part I: an adaptive algorithm based on neuromimetic architecture. Signal Process. 24(1), 1–10 (1991)

    Article  Google Scholar 

  35. M. Kendall, A. Stuart, The Advanced Theory of Statistics, vol. 1 (Charles Griffin, London & High Wycombe, 1977)

    Google Scholar 

  36. M. Krob, M. Benidir, Blind identification of a linear-quadratic model using higher-order statistics, in Proceedings of ICASSP 1993, vol. 4, Minneapolis (1993), pp. 440–443

    Google Scholar 

  37. M. Krob, M. Benidir, Blind identification of a linear-quadratic mixture: application to quadratic phase coupling estimation, in Proceedings of the 1993 IEEE Signal Processing Workshop on Higher-Order Statistics, South Lake Tahoe, CA (1993), pp. 351–355

    Google Scholar 

  38. S. Madrolle, P. Grangeat, C. Jutten, A linear-quadratic model for the quantification of a mixture of two diluted gases with a single metal oxide sensor. Sensors 18(6), paper no. 1785 (2018)

    Google Scholar 

  39. S. Madrolle, L. Duarte, P. Grangeat, C. Jutten, A Bayesian blind source separation method for a linear-quadratic model, in Proceedings of the 26th European Signal Processing Conference (EUSIPCO 2018), Rome (2018), pp. 1242–1246

    Google Scholar 

  40. A. Mansour, C. Jutten, A direct solution for blind separation of sources. IEEE Trans. Signal Process. 44(3), 746–748 (1996)

    Article  Google Scholar 

  41. J.M. Mendel, Tutorial on higher-order statistics (spectra) in signal processing and system theory: theoretical results and some applications. Proc. IEEE 79(3), 278–305 (1991)

    Article  Google Scholar 

  42. F. Merrikh-Bayat, M. Babaie-Zadeh, C. Jutten, Linear-quadratic blind source separating structure for removing show-through in scanned documents. Int. J. Doc. Anal. Recognit 14(4), 319–333 (2011)

    Article  Google Scholar 

  43. A. Mohammad-Djafari, K.H. Knuth, Chapter 12. Bayesian approaches, in Handbook of Blind Source Separation. Independent Component Analysis and Applications, ed. by P. Comon, C. Jutten (Academic, Oxford, 2010), pp. 467–513

    Chapter  Google Scholar 

  44. F. Mokhtari, M. Babaie-Zadeh, C. Jutten, Blind separation of bilinear mixtures using mutual information minimization, in Proceedings of IEEE MLSP, Grenoble (2009)

    Google Scholar 

  45. C.L. Nikias, J.M. Mendel, Signal processing with higher-order spectra. IEEE Signal Process. Mag. 10, 10–37 (1993)

    Article  Google Scholar 

  46. D.T. Pham, P. Garat, Blind separation of mixture of independent sources through a quasi-maximum likelihood approach. IEEE Trans. Signal Process. 45(7), 1712–1725 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Deville, Y., Tomazeli Duarte, L., Hosseini, S. (2021). Independent Component Analysis and Bayesian Separation Methods. In: Nonlinear Blind Source Separation and Blind Mixture Identification. SpringerBriefs in Electrical and Computer Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-64977-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64977-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64976-0

  • Online ISBN: 978-3-030-64977-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics